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INTRODUCTION 

The vaporization characteristics of many of the 

vanadium halides have been known for several years, but 

the associated thermodynamic data have not been investi­

gated. The lack of information may be explained by the 

complicated reactions which are inherently present in these 

sublimation processes. Such complications can be seen in 

the elements where, instead of vaporizing as a well-defined 

form, many have been found to vaporize also as dimers or as 

higher polymers. Examples can be found in the vaporization 

of sodium, phosphorus, sulfur and carbon. Some well-known 

compounds which are known to vaporize as mixtures of 

monomers and polymers are AlgClG, P4O1Q and CU3CI3 = In 

recent years, a concentrated effort has been undertaken to 

obtain the value for many of the physical constants which 

are presently unknown or which have been erroneously 

reported in the literature. The purpose of this investiga­

tion has been to clarify the existing knowledge which is 

known concerning the properties of some of the vanadium 

halides„ 
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Preparation and Stability of Vanadium Halides 

After the discovery of vanadium in 1831 by Sefstrom 

(1), very little work was done with its compounds owing to 

the extreme difficulty of separating the metal from its ore. 

In 1865 Sir Henry E. Roscoe (2), who may be considered the 

father of vanadium chemistry, began a rather extensive study -

of various vanadium substances, and in 1869, he produced the 

metal by the hydrogen reduction of vanadium(II) chloride. 

In the years since Roscoe1s preparation, intensive research 

has been done on vanadium and its chemistry. A brief review 

of a part of this chemistry, that pertaining to the halides 

and their stabilities, will now be discussed. 

Vanadium(IV) chloride 

The preparation of this material has been accomplished 

via several methods (3, 4, 5). However, the best method 

developed is the direct chlorination of ferrovanadium (6). 

A low oxygen content alloy must be used to prevent the for­

mation of the oxytrichloride since the separation of this 

liquid from the tetrachloride is very difficult. Any iron 

(III) chloride formed is easily removed by distillation. 
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Vanadium(IV) chloride is a viscous liquid, red brown 

in color, which fumes in air. The molecule possesses a 

regular tetrahedral structure with V-Cl distances of 2.03 f 

0o02 2 and Cl-Cl distances of 3332 + 0.03 A (7). Simons and 

Powell (8) have determined the expression for the vapor 

pressure between 39.5° and 80.2°C to be: 

1998 
log Pycî  = - + 7.581 (in mm.). Eq. 1 

The molar heat of vaporization calculated from this expres­

sion is -9.1 kilocalorieso The same workers obtained a 

Trouton constant of 21.3„ Ruff and Friederich (3, p„ 296) 

have estimated the heat of formation to be -165 + 4 kilocal­

ories, while Brewer (9) gives a value of -141 + 30 kilocal­

ories. The latest Bureau of Standards circular (10) lists 

a value of -138 kilocalories. 

The tetrachloride of vanadium has been shown (11) to 

decompose slowly at room temperature to yield vanadium(III) 

chloride and chlorine. This reaction, which is quite rapid 

at the boiling point of the tetrachloride (154°C), has been 

studied by Simons and Powell (8, p„ 77). These authors 

obtained a heat of reaction (eq. 2) of 13.8 kilocalories; 

VC14(1) = VCI3(s) + %Cl2(g) Eq„ 2 
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it should be stated that their measurements extended over a 

range of only twenty degrees centigrade (160° to 180°C). 

This decomposition should be expected from the heats of for­

mation of the tri- and tetrachloride of vanadium, as the 

conversion of the tetrachloride into the trichloride and 

free chlorine evolves approximately 22 kilocalories per mole 

of the tetrachloride. At higher temperatures (above 650°C), 

the tetrachloride and the dichloride are the stable compounds 

present. The tetrachloride is readily attacked by water to 

give hydrochloric acid and vanadium(IV) oxydichloride. 

Vanadium(III) chloride 

Many procedures have been devised for the preparation 

of this substance, but the synthesis of this compound in 

high purity has met with little success. 

Initial experiments towards preparation of the solid 

were performed by Roscoe (2, p. 347) by passing a mixture 

of the tetrachloride and hydrogen through a hot tube. 

Gutmann (12) has shown that mixtures of the dichloride and 

trichloride are formed owing to the difficulty in control­

ling the reaction temperature. 

The method still favored for the preparation of the 
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trichloride, developed by Meyer and Backa (13), involves 

the thermal decomposition of the tetrachloride by refluxing 

in a stream of inert gas. Additional work on this procedure 

has been conducted by Foley _et al. (14). 

Other methods for the preparation of vanadium(III) 

chloride include: (1) heating a mixture of disulfur di-

chloride and vanadium(V) oxide in a sealed tube at 300°C 

(2, p. 326), (2) the reaction of sulfur with either vanadium 

(IV) chloride or vanadium(V) oxytrichloride (4, p. 515), (3) 

the reaction of fine vanadium powder with iodine monochloride 

(12, p. 1157). The difficulty in completely removing sulfur 

decreased the efficiency of the first two methods. The 

third method was inadequate since it yielded only twenty 

per cent product. - -

Vanadium(III) chloride is a violet solid of rather low 

volatility. The structure of the compound is rhombohedral; 

it may also be described in terms of a hexagonal unit cell 

containing six molecules 0 By utilization of x-ray diffrac­

tion techniques, the lattice constants were determined to 

be: a0 = 6.012 2, cc = 17.34 A (15). Ruff and Friederich 

(3, p. 302) have estimated the heat of formation of the 

trichloride to -187 + 0.8 kilocalories. Brewer (9, p. 108) 
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predicts a value of -139 + 30 kilocalories, while the value 

given in the Bureau of Standards circular (10, p. 52) is 

-137 kilocalories. 

Ruff and Lickfett (4, p. 508) indicate that under heat­

ing, the trichloride changes chemically by disproportiona­

tion to the dichloride and the tetrachloride. This fact has 

been substantiated by other workers (16, 17, 3, p. 280). 

Oranskaya et al. (18) have recently determined the equili­

brium for this reaction using the transpiration method. The 

equation for the disproportionation pressure may be written 

in the form: 

log + 11.58 (in mm.) Eq. 3 

for the temperature range of 425° to 655°C. The error in 

the experimental tetrachloride pressure is given as five 

to six per cent. From the resulting disproportionation 

equation the heat of reaction is determined as 38 + 1 kilo­

calories while the entropy of the reaction is 39.6 + 0.5 

entropy units. These values agree favorably with those 

calculated from the heats of formation provided by the 

Bureau of Standards circular (10, p. 52). 

Vanadium(III) chloride is quite hydroscopic and easily 

dissolves in water. It may be recrystallized from water, 
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yielding the hexahydrate which is analogous to the hexahy-

drate of chromium(III) chloride. 

Vanadium(II) chloride 

This material has been prepared by the hydrogen reduc­

tion of vanadium(III) chloride (4, p. 518) at 750°C, and by 

the thermal disproportionation of the trichloride (4, p. 520) 

at temperatures near 900°C. 

The dichloride is an apple-green practically non-volatile 

substance which is slowly affected in air, taking up water 

and oxygen to yield a brown solution. The crystal structure 

is of the cadmium(II) iodide type with lattice constants of: 

aQ = 3.6,0 + 0.01 1, cQ = 5.83 + 0.01 A (19, 20, 21). The 

dichloride is a very stable material to thermal decomposi­

tion; its melting point has been determined to be 1350 + 25°C 

(22). The heat of formation of the solid has been given 

values of -147 + 4 (3, p. 300), -110 + 8 (23), -108 (10, p. 

52), -117 +20 (9, p. 108) kilocalories per mole. 

Oranskaya and Perfilova (24) have determined the vapor 

pressure of the dichloride using a transpiration method. 

From the equation relating pressure and temperature (eq. 4), 

""97 20 7 
log Pycl2 = T +8.60 (in mm.) Eq. 4 
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a heat of vaporization of 44 + 1 kilocalories and an entropy 

of vaporization of 26.1 + 0.5 entropy units was obtained. 

The values estimated by Brewer (9, p. 200) are 35 kilocal­

ories and 21 entropy units respectively. 

Vanadium(IV) bromide 

This material has been reported nonexistent and impos­

sible to prepare by several workers (25, 13, p. 187, 26). 

Brewer (9, p. 223) has stated that the tetrabromide is quite 

unstable at room temperature decomposing to the tribromide 

and bromine, but becomes stable again at temperatures over 

500°K. He lists a heat of vaporization of 12.kilocalories 

and an entropy of vaporization of 23 entropy units. His 

value for the heat of formation is given as -122 + 30 kilo­

calories per mole. 

Vanadium(III) bromide 

The solid black platelets have been prepared by the 

direct bromination of the carbide (26, p. 2534), the nitride 

(25, p. 28), and the metal at temperatures over 450°C (13, 

p. 187). The tribromide may be prepared by the reaction of 

the metal with bromine at 40°C (13, p. 187); this is unlike 
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the trichloride. Its properties are very similar to those 

of the trichloride in regards to moisture. Both compounds 

form a hexahydrate and are very soluble in water. The only 

thermodynamic value given for the solid is -115 + 30 kilo­

calories per mole for the heat of formation. Ruff and 

Lickfett (26, p. 2535) report that the tribromide, unlike 

the trichloride, may be sublimed without, decomposition or 

disproportionation. 

Vanadium(II) bromide 

The pale ocher solid has been prepared by the hydrogen 

reduction of the tribromide at temperatures exceeding 400°C 

(27). The structure of the dibromide has been determined 

by Klemm and Grimm (28) to be hexagonal with lattice con­

stants of: aG = 3.768 S, cD = 6.180 Brewer (9, p. 108) 

estimates the heat of formation to be -100 + 20 kilocal­

ories per mole. 

Transport Processes 

The application of this method for the preparation of 

single crystals and of difficult to prepare solid solutions 
it 

has been known for several years. Schafer, who is one of 

-x 
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the better known investigators in this field, has studied 

many of the transport properties of the transition elements 

(29, 30, 31). He has given a rather extensive discussion 

of the transport phenomenon when applied to a substance in 

a temperature gradient (32)„ 

In a reaction such as that given in equation 5, the 

A(s) + B(g) = C(g) Eq„ 5 

process may be considered to be one.of transporting solid A 

from temperature to Tg by forming the intermediate gas C. 
ii 

Schafer has derived an equation which can be used to calcu­

late the amount of material transported after a certain 

period of time if the diffusion coefficient, cross sectional 

area of the diffusion section, and the linear flow velocity 

are known„ 
h 

In another paper (33) Schafer discusses the use of 

enthalpy and entropy values to determine the feasibility of 

a transport process of the type of equation 5. His conclu­

sions may be summarized as follows: 

lo The transport process will occur if there is 

no crystal phase present on one side of the equation. 

2o When the heat of reaction is zero, no trans­

port will occur. 
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3. A reaction with an extreme equilibrium value 

will yield no measurable crystal phase transfer. 

4. If the entropy of reaction is small, then a 

very small amount of material will be transported. 

5. There exists, for each value of the entropy 

of reaction different from zero, a value which will 

yield the maximum transfer effect. For the transfer 

to be large, the equilibrium constant must be approx­

imately one. For large values of the entropy, a con­

siderable crystal phase transfer is only possible if 

the enthalpy and the entropy have the same sign. 

6. A reaction exhibiting a sufficiently large 

positive entropy will only show an appreciable 

crystal transfer in the direction from higher to 

lower temperature. 

7. The amount of material transported increases 

with an increase in the numerical value of thé entropy 

when the enthalpy, is correspondingly changed. 

8. A change in the temperature will usually 

produce a rather drastic change in the equilibrium 

constant and hence in the quantity of material 

transported. 
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Vaporization Processes 

In order to determine the thermodynamic data associated 

with any vaporization process, the exact nature of the gase­

ous species must be known. All substances may be considered 

to vaporize in at least one of the following methods. In 

many cases several of these processes may occur simultane­

ously and different ones may occur at different temperatures. 

Simple vaporization 

The simplest process known is that in which the vapor 

component is identical to that found in the solid or liquid. 

Examples of this process can be found in the vaporization of . 

MXn(s,1) = MX̂ (g) Eq. 6 

many of the metals. 

Polymer vaporization 

In some instances, the vapor does not correspond to the 

yMXn = MyXnyCg) Eq. 7 

simple monomer but is composed of dimers or higher polymers. 

Examples of this process may be seen in the aluminum(III) 

chloride and iron(III) bromide systems. 
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Disproportionation vaporization 

In addition to the methods given previously, the vapor 

may consist of a volatile higher halide and a volatile or 

nonvolatile lower halide or, in some cases, even the element. 

2MXn(s) = MX̂ Cg) + MXn_1(s,g) Eq. 8 

As examples, the following reactions may be noted: 

2TiBr3(s) = TiBr̂ (g) + TiBr2(s) Eq„ 9 

2ZrÇl2(s) = ZrC 14(g) + Zr(s) Eq. 10 

Hg2Cl2(s) = HgCl2(g) + Hg(g) Eq. 11 

Decomposition vaporization 

Vaporization may also occur by a simple process of 

decomposition, in which case a lower halide or even an ele­

ment may be formed. This phenomenon may occur during the 

MXn(s) = MXn_1(g) + %X2(g) Eq. 12 

heating process when the original compound decomposes to a 

more volatile compound. The following reactions may be con­

sidered as examples in this class: 

CuCl2(s) = CuCl(g) + %Cl2(g) Eq. 13 

BaS(s) = Ba(s) + S(g) Eq. 14 

The four processes have been discussed as if pertaining 

only to the halides, but these various vaporization methods 

are quite general and may be extended to all substances. 
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Methods for the Determination of Vapor Pressures 

and Decomposition Pressures 

Many methods and countless variations have been utilized 

for the determination of vapor pressure, each presenting its 

own specific advantages and disadvantages. Several recent 

comprehensive reviews of these methods are found in the lit­

erature . In the reviews the methods of vapor pressure 

measurement are critically discussed. 

Ditchburn and Gilmour (34) described the methods in use 

and critically discussed vapor pressure data which had accu­

mulated in the literature from 1925 to 1941. Dushman (35) 

compiled tables of vapor pressures of metals and discussed 

the data available in 1949. Speiser and Johnston (36) dis­

cussed in some detail the sublimation, evaporation, and 

effusion techniques in use in 1950. Brewer (9) gives one 

of the most comprehensive studies of thermodynamic data 

available to date. In the following discussion is described 

several of the methods used for the measurements of low vapor 

pressure. 

Bourdon gauge 

The use of a glass pressure gauge for the measurement 
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of pressures of vapors which attack mercury, or for measure­

ments in which the experiment requires the manometer to be 

at a high temperature, was introduced by Landenburg and 

Lehman (37). For the statical determination of vapor pres­

sure of many pure substances and dilute solutions, and of 

chemical equilibria, a Bourdon gauge is almost indispensable. 

Many changes and various forms have been made to improve the 

original design; a brief review of the more interesting ones 

will now be discussed. 

Warburg and Leithauser (38) developed a gauge, Figure 

la, consisting of a thin glass membrane to which a mirror 

has been attached. The change in pressure is noted by the 

deflection of a beam of light from the mirror. 

Smith and Taylor (39) have designed a rather novel 

gauge, Figure lb, which can be heard when the equilibrium 

is upset. As the pressure is altered across the gauge, the 

membrane is first distorted and then, when it changes posi­

tion, „an. audible click is heard. The authors report a sen­

sitivity as low as 0.2 millimeter mercury. 

Daniels has reported two gauges which utilize electrical 

contacts for balancing purposes. In the first cell (40), 

Figure le, a thin glass membrane is coated with platinum and 
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Figure la 

A. Light beam 

B. Membrane 

C. Mirror 

Figure lb 

A. Membrane 

Figure le 

A. Platinum 

B. Electrical 
connections 

C. Membrane 

Figure ld 

A. Membrane 

B. Electrical 
connections 

Figure le 

A. Spoons 

B. Fulcrum 

C. Pointer 

Figure lf 

A. Spiral 

B. Pointer 

C. Window 

D. Damping 
liquid 

Figure 1. Various Bourdon Gauges 



www.manaraa.com

17 

a* 

FIGURE la 

o 

FIGURE lb 

B-

1 

i 
FIGURE ic 

A 
FIGURE Id 

FIGURE le FIGURE If 
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a glass arm, also covered with platinum, is sealed to the 

side of the gauge. Fluctuations in the pressure are 

observed by the interruptions in the current flowing through 

the cello The diaphragm has a sensitivity of approximately 

one millimeter mercury. Difficulty in keeping the platinum 

scrupulously clean and the necessity of preventing sparking 

are two disadvantages. 

The second gauge designed by Daniels (41) is very simi­

lar to the one previously discussed but the new innovation 

is the utilization of platinum wire instead of a platinum 

coating for the electrical contacts (see Figure Id). As the 

glass membrane is deflected by a slight pressure change, the 

small platinum wire sealed to the side of the cell is pressed 

against the attached wire extending from the glass rod. 

Electrical contact is made indicating that equilibrium is 

no longer maintained in the cell. 

Stanwick (42) described a double spoon gauge (see Figure 

_ 2 le) for detecting pressure differences as low as 10 milli­

meter s of mercury. The two spoons are connected facing each 

other by a rigid glass support which in turn is joined to 

the pointer by a lever type mechanism. For maximum sensiti­

vity, the length of the pointer to the lower end of the 
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fulcrum is found to be five millimeters. The gauge is 

stated to be very stable when subjected to vibration, much 

more so when compared to single spoon gauges of similar sen­

sitivity. The greatest drawback with any spoon gauge is its 

inability to withstand large pressure differences; one has 

not yet been constructed that can survive differences in 

pressure of one atmosphere. 

An excellent discussion is given by Vaughan (43) con­

cerning the construction of a Bordenstein quartz spiral manom­

eter (see Figure If). Its many advantages include: (1) a 

very small volume, (2) ability to withstand elevated temper­

atures, (3) ease of manipulation, and (4) ruggedness. Its 

greatest shortcomings include the extreme difficulty in 

fabrication and the problems associated with cleaning of the 

cell. A well-constructed cell will have a sensitivity of 

0.1-0.2 millimeters mercury and can readily withstand one 

atmosphere pressure difference. 

k 

Transpiration method 

One of the most commonly used methods for the determin­

ation of vapor pressure is one which has been known by 

several names; viz., gas-saturation, transpiration, and 
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transportation method. In most cases, a steady stream of 

inert gas, whose volume is measured, is passed over the 

material under investigation, whose temperature is carefully 

controlled. The rate of flow is slow enough so that complete 

saturation of the inert gas by the vaporizing species is 

obtained. The vapor from the sample is condensed or collec­

ted by absorption or chemical combination at a cooler portion 

of the apparatus. The measurements are usually obtained over 

a range of flow rates so that the proper rate for complete 

saturation may be determined. Figure 2a shows the effect of 

flow rate on the apparent vapor pressure; high values at low 

flow rates are due to diffusion effects and low values at 

high flow rates are due to incomplete saturation of the 

carrier gas. Merten (44) gives an excellent discussion con­

cerning the problem associated with diffusion effects related 

to this method. Another excellent but rather mathematical 

discussion of the entire transpiration method is given by 

Lepore and Van Wazer (45). In Figure 2b is shown a typical 

apparatus, of which many variations may be found in the 

literature (46, 47). 

The partial pressure of the vapor species being measured 

is calculated from the volumes or mole fractions of the trans-
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Figure 2a. Effect of Flow Rate on Vapor Pressure 

Figure 2b. Typical Transpiration Apparatus 

A. Gas inlet D. Capillary 

B. Gas preheater E. Condensing tube 

C. Sample boat 

Figure 2. Transpiration Effects and Apparatus 
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ported substance and the transporting gas at standard tem­

perature and pressure, assuming Dalton's law and the ideal 

gas law are valid. A more rigorous treatment is discussed 

by Gerry and Gillespie (48). 

The lower limits of the method appear to be in the 10" 

millimeter range with accuracies of approximately five per 

cent. One of the major difficulties in operating in this 

very low pressure region arises from the microscopic quan­

tity of material that is transported during the experiment. 

The desirability of a fairly extensive investigation into 

adequate analytical procedures before utilizing this method 

are relatively apparent. Another important factor which 

must be considered is the attainment of a properly slow flow 

rate to secure complete saturation. 

Effusion method 

The Knudsen method (49) consists essentially of a 

measurement of the rate at which atoms effuse through an 

orifice in an enclosed chamber containing the material being 

studied at its equilibrium vapor pressure. When the gas is 

in thermal equilibrium with the chamber and one of the con­

densed phases of the gas, the pressure in the vessel is by 
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definition the equilibrium (saturated) vapor pressure. By-

utilization of kinetic theoretical considerations, the rate 

of mass flow can be related to the equilibrium vapor pres­

sure. In the following discussion the vaporizing species 

will be considered to be monoatomic and behave as an ideal 

gas. 

The relationship between the pressure and the mass flow 

of a gas across a plane of unit area of the gas is predicted 

by kinetic theory to be 

P = m(2iTRT/M)̂ , Eq. .15 

where m is the mass of gas crossing unit area of the plane 

per second, P is the pressure of the gas, T is the absolute 

temperature of the gas, R is the gas constant per mole and 

M is the molecular weight. The units in this discussion 

will be of the cgs system unless otherwise indicated. The 

derivation of equation 15 may be found in Kennard (50). 

If the interior of the gas is considered, effusive flow 

may be defined as being possessed by those molecules which 

move in one direction across a plane of finite area drawn 

anywhere in the gas at equilibrium. The gas can be consid­

ered to be in complete equilibrium when its temperature is 

the same as the enclosing vessel. If a very small hole of 
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area a is opened in the wall of the vessel of such a size 

that it does not disturb the equilibrium inside the vessel, 

the flow of gas through the hole will constitute effusive 

flow. Since effusive flow is unilateral, the gas pressure 

on the exterior of the vessel has no effect on the mass of 

gas leaving the hole. For convenience in experimental 

measurements, the vessel containing the gas is placed in a 

vacuum where the external pressure is due only to the resid­

ual gases. Knudsen (51) has determined the limits which 

must be placed on the size of the hole for the measurement 

of pressure by the effusion method. The nature of the flow 

through the orifice must be entirely molecular, that is, the 

atoms of the effusing substance must have free paths of at 

least ten times the diameter of the orifice. If this condi­

tion is not met and higher pressures exist, the flow will 

have streaming characteristics and the kinetic theory will 

no longer apply. When this condition is satisfied for a 

small size orifice, equation 15 may be rewritten in the form 

P = (g/a) (2TTRT/M)̂  Eq„ 16 

where a is again the area of the orifice and g is the mass 

of gas leaving per unit time. The orifice must have a thin 

edge in order to approximate a geometric plane. An orifice 
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possessing thick walls would return into the vessel a frac­

tion of the molecules entering it, thereby altering the 

distribution of the effusing gas molecules with respect to 

direction of travel. In addition, an orifice whose walls 

have appreciable thickness may exhibit temperature differ­

ence between the wall and the rest of the cell. 

The effect of the orifice area and thickness on the 

equilibrium between the gas and the condensed phase in the 

Knudsen cell can be computed. Assume the area of the sub­

stance effective in the evaporation is S and that the mater­

ial has an accommodation coefficient . The accommodation 

coefficient is defined (50, p. 20) as the ratio of the mass 

of molecules which actually condense on a surface to the 

mass which strikes the surface. The mass of molecules which 

actually condense per unit time is given by <*m. 

If equilibrium were established at the true vapor pres­

sure P1, then <*m(P')S grams of gas would condense per unit 

time on the effective area S, where m(P') is the mass of 

molecules striking a unit area of surface per unit time in 

a gas of pressure P1 whose temperature is T. The same mass 

would also evaporate from the condensed phase. Now when 

the orifice of area a is opened in the wall of the vessel, 
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the equilibrium will be disturbed by the escape of molecules 

from the orifice. A steady state will be established at a 

lower pressure such that the flow of molecules from the hole 

is balanced by the net evaporation from the surface S. The 

rate of effusion is am(P) where m(P) is defined for P in the 

same manner as m(P') was defined for P1. In this nonequi-

librium case the net rate of evaporation is the total rate 

of evaporation, <*m(Pf)S, less the gross rate of condensa­

tion j *m(P)S. Hence, the following relationship 

am(P) = *m(P')S - <*m(P)S , Eq. 17 

or 

m(P) = m(P') — . Eq. 18 
(a/S) + *. 

If both sides of equation 18 are multiplied by (M/N) 

(2 ttRT/M)2, where N is Avogadro's number, the result is 

P " *' (a/S)"+ « * 

The necessary conditions for the pressure calculated 

from the rate of effusion to be equal to the saturation 

(equilibrium) pressure can be seen from equation 19. The 

accommodation coefficient can be neglected if (a/S)« «, in 

which case P = P1. Thus when the ratio of the area of the 

orifice to the effective surface area of the sample is much 
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less than the accommodation coefficient, the loss of mole­

cules has no appreciable effect on the equilibrium in the 

Knudsen cell. This condition is experimentally determined 

by obtaining the rate of effusion from Knudsen cells of 

several a/S values 0 If the rates are independent of thes"é 

ratios, then the pressures calculated from equation 16 will 

be the equilibrium vapor pressure. The pressure determined 

in this way is independent of the accommodation coefficient. 

A rather comprehensive discussion by Whitman (52) 

treats the effects of the size and shape of the effusion 

vessel, of the diameter and thickness of the orifice, and 

of the accommodation coefficient on the measured vapor pres­

sure. Whitman derives an equation giving the relationship 

between the pressure and the mass flow when the geometrical 

factors of the vessel's size and shape are considered. The 

equation is noted below 

p = -̂ (2»rt)%(l-b) , Eq. 20 

where 

and where 

K l-(l-£Wb)(l-Wa) ' 

b = (l-«) [l-Wg + K-ng (l-fWb)j , Eq. 21 

wawfo 
Eq. 22 
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Wa is the probability that a molecule evaporating from the 

condensed substance reaches the orifice. Wy is the proba­

bility that a molecule reaching the orifice passes through 

it. The factor f is the ratio of the diametric cross sec­

tional area of the vessel to the area of the orifice. All 

other symbols in equation 20 have the meaning previously 

stated. 

Clausing (53) has developed theoretical values for 

quantities similar to these probabilities for various ratios 

of orifice radius to length. However, the following four 

conditions must be satisfied: 

1. Only collisions of the molecules with the 

walls of the tube are allowed. 

2. A diffuse reflection of molecules is obtained 

after collision. 

3. The molecules leave the orifice and enter the 

condensation tube with the usual cosine distribution 

of directions. 

4. The molecules enter uniformily over the face 

of the condensation tube. 

The lower pressure limit of about 10" millimeter of 

mercury for the method is determined by the sensitivity of 
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the weighing or other detecting device. The upper pressure 

_ n 
limit of approximately 10~ millimeter of mercury is deter­

mined by the requirement that the mean free path of the 

atoms flowing through the orifice be at least ten times the 

dimensions of the orifice and by practical difficulties in 

making and using small orifices. A serious limitation is 

placed on this method since the molecular weight of the 

vaporizing species must be known. 

Evaporation method 

For substances which are quite refractory and hence 

have very low vapor pressures even at elevated temperatures, 

an indirect method is used. As in the Knudsen method a 

quantity which is directly related to the vapor pressure is 

measured. 

When a substance is in equilibrium with its vapor, as 

many atoms per unit area per unit time condense on its sur­

face as evaporate from it. If no reflections of atoms occur, 

that is, if all atoms striking the surface are held for a 

finite length of time and do not rebound, then the number of 

atoms moving away from the surface in its neighborhood is 

equal to the number of atoms evaporating. This number is 
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equal to the rate at which atoms cross any plane in the gas. 

Thus, the vapor pressure is directly related to the rate of 

evaporation or sublimation from the surface of the substance, 

and hence to a decrease in weight. 

Langmuir (54) was the first to utilize this method when 

he determined the vaporization characteristics of tungsten 

filaments at high temperatures„ The equation used for the 

determination of vapor pressure is obtained by combining 

the definition of the accommodation coefficient with the 

equation for effusive flow to give 

P = (m/~ ) (2<7RT/M)^ Eq. 23 

where the symbols have their usual meaning. The method has 

been successfully applied to vapor pressures as low as 10~^ 

millimeter of mercury. The disadvantages in the method 

include uncertainties in the accommodation coefficient, 

length of time required to complete an experiment, accurate 

determination of the temperature, and lack of knowledge 

about the molecular weight of the vaporizing species. 

Torsion method 

» 
This method, developed by Volmer (55), consists of a 

Knudsen effusion cell suspended by a thin fiber. The place-
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ment of the two effusion holes are rather critical; usually 

they are placed on opposite sides of the cell in such a 

manner that the axes of the two holes are parallel and are 

perpendicular to both the axis of suspension and the long 

axis of the cell. The two streams of effusing gas tend to 

twist the cell which rotates until compensated by the oppos­

ing torque of the fiber. The pressure of the effusing sub­

stance may be determined if the force constant of the fiber 

and the dimensions of the cell are known. 

Customarily, the cell is calibrated with a substance of 

known vapor pressure, but it is possible to perform the 

calibration from measurements of the effusion hole areas, 

the distance between the centers of the holes and the axis 

of suspension, and the force constant of the fiber. 

The major advantage attributed to this method lies in 

the fact that no assumptions about the molecular weight of 

the vapor are required. Several investigators (56, 57) in 

recent years have used this method for the. determination of 

molecular weights at high temperatures, but they have met 

with only limited success. The values obtained averaged 

about twenty to thirty per cent low. 

However, the torsion method proves to be useful and 
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convenient for obtaining accurate values of low vapor près-

_ C _ *1 

sures from 10" to 10" millimeter mercury. In addition, 

the pressure may be determined continuously at several tem­

peratures once the cell is loaded. The method requires a 

considerable amount of attention and much care as the cell 

is quite fragile and sensitive to vibration. 

Mass spectrometric method 

This method is identical to the one developed by Knudsen 

except in the manner in which the final measurement is made. 

A small effusion cell in the form of a covered crucible con­

tains the material and its vapor. Atoms of the vapor escape 

from a hole in the crucible's cover and strike a heated 

filament. They are immediately evaporated and a fraction 

of them are evaporated as singly charged positive ions which 

are analysed by a mass spectrometer. Multiple charges are 

not produced. The ion beam current is then directly propor­

tional to the vapor pressure. 

Several advantages may be attributed to this.method. 

Almost instantaneous results can be obtained which allow 

observations of melting point and solid to solid phase 

transitions to be made directly. In some instances the 

sensitivity of - Knudsen's method has been increased by a 
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factor of a thousand due to the increased sensitivity in the 

measurement of ion currents. The distinction made by the 

mass spectrograph between ions of different mass to charge 

ratios permit the separation of impurity ions from ions of 

interest. Dimers or higher polymers can easily be detected. 

The method does present serious disadvantages. The 

method is not applicable to all species because many have 

too low a probability of ionization at the filament. For 

most species the probability of ionization is only approxi­

mately known. To measure vapor pressures directly, the ion­

ization probability and the geometry of the system must be 

independently known. In most instances the systems are cal­

ibrated by using substances of known vapor pressure, while 

occasionally the calibration is performed during the actual 

determination of the unknown (58)„ 

Thermodynamic Data from Vapor Pressure Measurements 

Various thermodynamic quantities can be related to the 

temperature dependence of the saturated vapor pressure. The 

form of the equation that is used is called the Clausius-

Clapyron relation. The latent heat of sublimation determined 

at any temperature may be related to the value at zero degrees 
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absolute by means of the Kirchhoff relation. When the 

Clausius-Clapyron and the Kirchhoff equations are combined 

the result is the equation of the vaporization curve. The 

vapor pressure is then related to the absolute temperature 

by means of experimentally determined quantities. 

Clausius-Clapyron equation 

This relation can be written as 

dP _ mt Eq. 24 
dT T(Vg-Vc) • 

where P is the equilibrium saturated gas pressure, T the 

absolute temperature, the latent heat of vaporization 

per mole, Vg the molar volume of the gas and Vc the molar 

volume of the condensed phase, either solid or liquid. The 

derivation of this equation may be found in almost any 

physical chemistry textbook (59, 60). The Clausius-Clapyron 

equation is quite general and holds for any equilibrium be­

tween two phases of a substance, e.g., solid and liquid, 

solid and vapor, or two crystalline forms. In any case AHt 

\ 

is the heat absorbed in the transition at temperature T and 

Vg-Vc is the increase in volume. The heat of vaporization 

can be determined if the temperature dependence of the 
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equilibrium vapor pressure is known. 

The molar volume of the condensed phase is so much 

smaller than that of the gas phase that the former can be 

neglected. The gas, when pressures range from zero to one 

atmosphere, is considered to be ideal. The ideal gas law 

for one mole can be written as 

' PV = RT , Eq. 25 

where P is the pressure, V the molar volume of the gas, R 

a constant called the gas constant and T the absolute tem­

perature of the gas. By combining equations 24 and 25 and 

neglecting Vc the result can be written as 

d(l/T) = " " Eq° 26 

If the equilibrium vapor pressure is known as a function of 

the absolute temperature, then equation 26 can be utilized 

to determine the heat of vaporization. The slope of a plot 

of the logarithm of the pressure as a function of reciprocal 

temperature will yield the latent heat of vaporization. 

Kirchhoff relation 

The temperature dependence of the heat of vaporization 

may be related to the heat of sublimation at zero degrees 

absolute, the specific heats of the substances, and any 
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heats of phase change by the Kirchhoff equation. A deriva­

tion of this relationship may be found in Zemansky (61). 

The equation may be expressed in the following form, 

= AH0 + _fTjCp(g)-Cp(c)J dt - f AHi, Eq. 27 

where is the heat of sublimation per mole at temperature 

T; AH0 the heat of sublimation per mole at zero degrees 

absolute; Cp(g) is the specific heat of a mole of the gas; 

Cp(c) is the specific heat of a mole of the condensed sub­

stance and AH^ is the molar heat of a phase change in the 

condensed phase. As can be seen from equation 27, the heat 

of sublimation is a slowly varying function of temperature 

at elevated temperatures since the specific heats vary 

slowly with temperature. The specific heat values are 

determined experimentally by careful calorimetry. 

When equation 26 and 27 are combined and integrated, 

the result can be expressed as 

In P ^ A"1 -f H2[cp(g)-Cp(=)] dt + I Eq. 28 

which is commonly called the equation of the vaporization 

curve. This relation illustrated the dependence of the 

equilibrium vapor pressure upon the temperature both expli-

city and implicity in the temperature dependence of the 
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specific heat and heats of phase change. The graph of 

equation 28 shows very little curvature and for portions 

corresponding to a temperature range of several hundred 

degrees is nearly a straight line. 

The utilization of equation 28 for determining heats 

of vaporization has been made extensively by Kelley (62) 

and Brewer (9). Accurate determination of both the pres­

sure and specific heat is required to obtain a value for 

by the use of equation 28. The use of the Clausius-

Clapyron relation requires only a measurement of pressure 

and determination of AHt can be more direct and precise. 

A determination of 4H0 is subject to considerable uncer­

tainty because of the difficulties in measuring specific 

heats over the wide range of temperatures required. 

Sigma function 

The accepted procedure for the determination of heats 

of vaporization is to plot the logarithm of the pressure 

against the reciprocal temperature and from the slope of the 

curve obtain a value for the heat of vaporization. The 

entropy of vaporization is determined as the intercept of 

the line with the axis at a reciprocal temperature value of 
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zero. Treatments of this type give only an average value 

for the heat of vaporization over the temperature range and 

the entropy may be in error by several entropy units. 

Brewer and Searcy (63) describe a procedure which uses in 

addition to the vapor pressure measurements any heat capa­

city and entropy data available from calorimetric or spec­

troscopic measurements. 

When heat capacity data is available then the normal 

method of calculating the thermodynamic quantities can be 

utilized; however, if they are unknown for the molecules 

being investigated, they should be estimated from data for 

similar molecules. Even if a constant value is assumed for 

dCp, much more accurate and useful results will be obtained 

in the free energy equation. 

Assuming a constant value for ACp, Brewer and Searcy 

obtained the following equations: 

>
 II a Eq. 29 

s
 o II AH° + aT Eq. 30 

•
 

o II AH° - aTlnT + IT 
o Eq. 31 

AS° = a + alnT - I Eq. 32 

The integration constant I must be determined experimentally 

if no entropy data is available from calorimetric or spec-
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troscopic investigations. By rearranging equation 31 to 

- AF°/T + alnT = AH0/T + i, Eq. 33 

the value i may be obtained by plotting AF°/T + alnT as a 

function of reciprocal temperature, the slope of the curve 

will be AHq, and the intercept at a reciprocal temperature 

value of zero will be i. The value of AF°/T + alnT has 

been defined as sigma. This method should yield somewhat 

more reliable values for the entropy when compared to the 

more common procedure of utilizing the intercept of the vapor 

pressure plot. The entropy obtained in the second method is 

strongly influenced by small errors in the experimental 

slope. 
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EXPERIMENTAL 

Materials 

Vanadium 

The.vanadium metal used for the preparation of the 

vanadium halides was obtained through the courtesy of Dr. 

0. N. Carlson and Mr. C. Owens of this Laboratory (64). 

The metal was purified by the Van Arkel-de Boer iodide de­

composition process starting with crude metal. A represen­

tative analysis of the purified metal showed the following 

elements were present in the amounts indicated. 

Carbon 100 ppm Silicon <30 ppm 

Oxygen 100 ppm Magnesium—<30 ppm 

Nitrogen--- <10 ppm Manganese—<30 ppm 

Hydrogen 10 ppm Nickel <30 ppm 

Iron <200 ppm Aluminum <30 ppm 

Chromium 200 ppm Calcium <30 ppm 

Chlorine 

The chlorine gas was obtained from lecture size cylin­

ders supplied by The Matheson Co. Purification was obtained 

by passing the gas through a potassium permanganate solution 
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to remove hydrogen chloride and then through sulfuric acid 

and over tetraphosphorus decoxide to remove moisture. 

Bromine 

The liquid, obtained from J. T. Baker Chemical Co., was 

of reagent grade purity. Moisture was removed by the vacuum 

distillation (at 10." millimeter mercury) of the liquid from 

tetraphosphorus decoxide. The liquid was stored in an evac­

uated flask connected to the vacuum system by a stopcock 

lubricated with fluorocarbon grease. 

Iodine 

The solid was obtained from J. T. Baker Chemical Co. 

Though of high purity, the material was further purified by 

grinding the solid with potassium iodide to remove any free 

chlorine and bromine. The moisture content was then reduced 

by the sublimation of the iodine from tetraphosphorus 

decoxide. 

All other reagents used in this investigation were 

those obtained from the usual commercial sources without 

further purification unless otherwise noted. 
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Analytical Procedures 

Vanadium 

The procedure for the determination of vanadium in the 

halides was principally the one that is found in Scott's 

Standard Methods of Chemical Analysis (65) . The sample was 

dissolved in 1:1 nitric acid followed by the addition of 

sulfuric acid, whereupon the solution was evaporated to 

fumes of sulfur trioxide. After cooling, water was added 

until"thé solution contained about five per cent acid. It 

was then heated to boiling and the vanadium was oxidized by 

adding tenth normal potassium permanganate until the solu­

tion was a faint permanent pink. The determination was 

completed by reducing the vanadium to the plus four state 

with sulfur dioxide gas; the excess gas was removed with a 

flow of carbon dioxide and the solution was titrated with 

tenth normal potassium permanganate until the pink color 

returned. The accuracy of the method was at least 0.15 per 

cent while a precision of better than 0.2 per cent was 

obtained. 

For vanadium contents in the 0.02 to 5 milligram range 

a procedure developed by Wright and Mellon (66) was used. 
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The reaction upon which the method was based was performed 

by adding sodium tungstate and phosphoric acid to an acid 

solution containing pentavalent vanadium. An immediate re­

action occurred in which a yellow or brownish yellow solution 

was formed, varying in hue and intensity with the vanadium 

concentration. The spectrum of this solution did not show 
P 

a maximum but it did exhibit a ridge at 420 m/v . The concen­

tration of the reagents was not too critical but optimum 

concentrations were given in the original paper. A blank 

and a standard solution were run during each series of 

measurements; the optical density of the solutions was read 

from a Beckman Model DU spectrophotometer. The calibration 

curve obeyed Beer's law for values of the optical density 

near 1,000 corresponding to approximately three milligrams 

of vanadium. With careful consideration to detail the method 

will yield an accuracy of about one to two per cent. The 

precision obtained was usually somewhat better than this, 

averaging less than one per cent. 

Chloride 

For the determination of this element in the absence of 

the other halides, the standard Volhard or Mohr method was 
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used. In the presence of other halides, the chloride con­

tent was obtained by one of the following two methods„ 

For mixtures of chloride and bromide, the procedure 

developed by McAlpine (67) gave acceptable results0 The 

method consisted of forming a compound with bromine which 

was unreactive toward silver nitrate. McAlpine has deter­

mined that bromine forms such a compound with acetone. The 

chloride was then determined using the standard Volhard 

method. The method gave results which were consistently one 

per cent high when standard solutions were run. Better 

accuracy, usually of the order of 0,5 per cent, was obtained 

when the chloride was "determined gravimetrically. The pre­

cision was about the same order of magnitude. 

The other method used for the separation of all three 

halides was that developed by DeGreiss est al, (68) „ The pro­

cedure consisted of collecting the mixture of halides on a 

column containing Dowex 1-X10 ion exchange resin which had 

been equilibrated with 0,5M sodium nitrate. The first 

eluent, 0„5M sodium nitrate, removed all chloride after 55 

millimeters of eluate had been collected. The concentration 

of the eluting agent was increased to 2M sodium nitrate 

which removed all bromide after about 55 millimeters of 
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eluate had been collected. Iodide was stripped from the 

column by further addition of sodium nitrate. The chloride 

and bromide accuracy was +0.2 per cent. Since a large 

volume of eluent was required to remove all of the iodide, 

the method presented serious disadvantages for the determin­

ation of this element. The results were quite acceptable 

but the procedure was rather tedious and required very care­

ful manipulation to obtain complete separation of the halides. 

Bromide 

This element was determined by utilization of the Vol-

hard method when no other halides were present. 

For the determination of bromide in the presence of 

chloride, the procedure developed by Kolthoff and Yutzy (69) 

yielded excellent results. Accuracy and precision of the 

method were on the order of 0.3 per cent. The method con­

sisted of oxidizing the bromide, to bromate by hypochlorite 

at a pH of 6 to 6.5. The excess hypochlorite was removed by 

sodium formate and the bromate determined iodometrically. 

Low concentrations of bromide ion were determined 

colorimetrically by utilization of its reaction with one of 

several alkaloids (70). Among the alkaloids used were 
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brucine, strychnine, and cinchonidine. Brucine gave the 

most sensitive color test. If chloritie was present, bromide 

was determined with strychnine. The solutions contained the 

alkaloid, phosphoric acid and potassium persulfate and were 

read at a wave length of 540 m/J using a Beckman Model DU 

spectrophotometer. The calibration curve obeyed Beer's law 

up to concentrations near 1.5 milligram bromide per ten 

millimeter sample. Accuracy of the method varied from one 

to two per cent. 

Iodide 

This element was determined in mixed halides by oxidiz­

ing the ion to the element with bromine water (71) . Excess 

bromine was then destroyed by the addition of sodium formate. 

The iodine was then determined in the normal manner. 

Preparation of the Halides 

Vanadium(IVV chloride 

The synthesis of this material was accomplished by two 

methods. First, the method of Bodforss et al. (5 ) was used 

since a large quantity of high purity vanadium(V) oxide was 

readily available. The pentoxide was reduced with hydrogen 
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at 525°C tô yield the trioxide. When the reduction was com­

pleted, the resulting trioxide was reacted with carbon 

tetrachloride by passing a stream of helium saturated with 

the tetrachloride vapor over the oxide at 525°C; the product, 

vanadium(IV) chloride, was condensed using the system shown 

in Figure 3. In the second method the tetrachloride was 

prepared by the chlorination of crystal-bar vanadium at a 

temperature of 400°C; the apparatus is identical to that 

previously shown. The liquid was not used directly but 

served only as an intermediate for the preparation of the 

lower halides of vanadium. 

Vanadium(III) chloride 

The trichloride was prepared by the method of Meyer and 

Backa (13) where the tetrachloride is refluxed in a stream 

of nitrogen. The liquid was refluxed for 48 to 72 hours at 

160° to 170°C. The residue was then heated to 200°C and 

_ Q 
evacuated to 10 millimeter mercury before taking into the 

glove box. The solid was ground so as to pass through a 

40-mesh screen, transferred to another tube and then outgas­

sed at 200°C under vacuum to remove the last traces of the 

tetrachloride. 
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Figure 3. Chlorination Apparatus 

A. Cold finger 

B. Vanadium(IV) chloride 

C. Furnace 

D. Vanadium metal or vanadium(V) oxide 

E. Tetraphosphorus decoxide 

F. Sulfuric acid or carbon tetrachloride 

G. Chlorine, hydrogen pr helium 

H. Tube sealed off after chlorination 

I. Inlet for nitrogen 
V 

J. Dibutyl phthalate bath 
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Vanadium(II) chloride 

This green solid was prepared by the hydrogen-reduction 

of the trichloride at 475°C. The resulting dichloride was 

then heated to 700°C under vacuum to remove any of the unre­

duced trichloride. 

Vanadium(III) bromide 

The tribromide was obtained by the direct combination 

of the elements in a sealed evacuated tube at 400°C. The 

reaction tube, Figure 4, containing the metal was first out-

gassed at 400°C at a vacuum of less than 10"*millimeter of 

mercury. Bromine was distilled into the reaction tube and 

the system reevacuated to less than 10"^ millimeter mercury. 

The tube was then sealed. During the course of the reaction, 

bromine was distilled repeatedly over the metal to hasten 

the rate of the reaction. The tribromide formed as black 

platelets on the cooler portions of the tube. The material 

was purified by sublimation in a bromine atmosphere at 350° 

to 400°C. 
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Figure 4. Bromination Apparatus 

A. Bromine 

B. Vanadium metal 

C. Tube sealed after evacuation 

D. Furnace 

E. Vanadium (III) bromide 

F. Ice water 
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Vanadium(II) bromide 

The dibromide was prepared by the hydrogen reduction of 

the tribromide at 450°C. The impure solid was purified by 

heating to 700°C under vacuum to decompose any tribromide 

not reduced. 

Solid Solution Formation 

The formation of solid solutions between two compounds 

which decompose before melting can present a formidable 

problem. Four methods were used to prepare solid solutions 

of vanadium(III) chloride with vanadium(III) bromide. 

The weighed samples of the two components were inti­

mately mixed by grinding them together. This powder was then 

placed in a vycor tube and evacuated to a pressure not ex­

ceeding 10~^ millimeter mercury. The tube was sealed, then 

heated to 700°C for at least twelve hours. The tube was 

rapidly quenched to room temperature by dropping it directly 

from the furnace into a container of ice water. The sample 

was annealed at 200°C for 24 hours after which it was slowly 

cooled to room temperature; the rate did not exceed 20° in 

a twelve hour period. The material was then removed, ground, 

and samples taken for analysis and x-ray diffraction analysis. 
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Weighed samples of vanadium (III) bromide were equili­

brated with known amounts of hydrogen chloride gas in an 

evacuated sealed tube at temperatures near 500°C. 

Weighed samples of vanadium(III) bromide were equili­

brated with chlorine gas at various partial pressures in a 

sealed tube at temperatures ranging from 400° to 450°C. 

Equilibrium periods were on the order of forty hours. 

The tribromide and the trichloride of vanadium were 

intimately mixed and then placed in an evacuated sealed tube 

containing bromine at a pressure of 220 millimeters mercury. 

When the mixture was heated to 325°C, a transport reaction 

occurred yielding the desired solid solution. 

Transport Reactions 

These reactions were attempted using two slightly dif­

ferent tube designs. 

The first series of experiments were performed using 

the type of apparatus shown in Figure 5a. The method con­

sisted of placing a small amount of the compound to be 

transported in one end of a straight tube. The tube was 

then evacuated and sealed, or in some cases, another com­

ponent was added before the tube was sealed. The tube was 
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Figure 5a. Transport Apparatus 

A. Two separately controlled furnaces 

B. Sample 

C. Transported material 

Figure 5b. Transport Apparatus 

A. Furnace 

B. Molten woods metal 

C. Fritted disk 

D. Sample 

E. Iodine 

F. Transported material 
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placed into a tubular resistance furnace containing two 

separate heating elements; the temperature of each element 

was then regulated by a temperature controller. 

A schematic diagram of the apparatus used in the second 

series of experiments is shown in Figure 5b. This equipment 

was used mainly for the transport of a substance in the pres­

ence of iodine vapor. The sample, whose temperature was 

regulated from 300° to 450°C, was placed on top of a fritted 

disk. The iodine was located in the bottom of the tube where 

its temperature was controlled between 130° and 185°C. The 

top of the furnace was left open to yield a temperature 

ranging from 210° to 275°C. The transport of the material 

occurred from the disk to the top of the tube. The trans­

ported material was then heated to 150°C under vacuum to 

remove any excess iodine. 

Vapor Pressure Measurements 

Transpiration Method 

A diagram of the apparatus is shown in Figure 6. Helium 

was used as a carrier gas. It was purified by flow through 

a tube of molecular sieves (Linde type 4A) which had been 
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Figure 6. Transpiration Apparatus 

A. Dibutyl phthalate bubbler 

B. Molecular sieves 

C. Uranium turnings 
ù 

D. Furnace 

E. Cold trap with glass beads 

F. Cell 
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previously outgassed at 200°C until a pressure of 10"^ milli­

meter mercury was obtained. The gas was then passed through 

uranium turnings at 800°C and finally through a trap at 

liquid nitrogen temperature. The over-pressure in the system 

was obtained*by a reading of the dibutyl phthalate level in 

the bubbler located at the front of the gas-purification 

train. 

The cell used was a modification of that of Treadwell 

and Werner (72). The complete cell is shown in Figure 7a 

and the condenser for vanadium(III) bromide and the trap for 

bromine are shown in Figure 7b. 

The purified helium entered the cell as indicated in 

Figure 6 and then the saturated gas passed out through the 

tribromide condenser into the bromine trap. From the trap, 

the helium passed through a drying tube (to prevent back-

diffusion of water vapor) into a water saturator and finally 

into a wet test meter for the measurement of the total gas 

flow. 

The furnace was of the nichrome resistance type contain­

ing double windings at the ends to prevent heat loss and a 

one-eighth inch thick steel liner to reduce any temperature 

gradients that were present. The furnace was arranged so 
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Figure 7a. Cell for Trans- Figure 7b. 
piration 
Experiment 

A. Helium inlet 

B. Pyrex wool 

C. Sample 

D. Coarse fritted 
disk 

E. Condensing system 

F. Outlet to wet-test 
meter 

Condensing System 
for Transpiration 
Experiment 

Ao Vanadium(III) 
bromide 
condenser 

B. Bromine and 
vanadium (IV) 
halide 
condenser 

C„ Outlet to wet­
test meter 
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that it could be raised and lowered over the cell. This 

allowed the furnace to be brought to temperature before 

lowering it into position over the cell. A Honeywell pro­

portional controller maintained the temperature of the 

sample within + 1°. The cell temperature was measured with 

a chrome1-alumel thermocouple which had been calibrated by 

use of the boiling point of sulfur and the melting point of 

lead. 

All cells were loaded in an argon filled glove box which 

had a dew-point averaging no more than -60°C. After filling, 

the cell was mounted in place and connected to the gas puri­

fication train. The system was then evacuated to less than 

5 x 10 ^ millimeter mercury with the usual vacuum system 

composed of a mechanical pump and a mercury diffusion pump. 

The furnace was brought to temperature in a position 

above the cell after which it was lowered around the cell. 

Thermal equilibrium was established before the helium flow 

was started. The desired flow rate had been previously 

established by noting the flow rate through the bubbler 

located at the front of the purification train. 

At the end of a run, the furnace was lifted away from, 

the cell. When the cell had cooled, the condenser was re­



www.manaraa.com

65 

moved and the amount of tribromide determined by spectro­

photometry analysis. The amount of bromine collected was 

determined either iodometrically or by spectrophotometric 

analysis. 

Additional transpiration experiments were performed on 

vanadium(III) bromide using bromine as the carrier gas. The 

pressure of bromine, which was determined by balancing it 

against a measured pressure of air in a diaphragm gauge, was 

controlled by immersing the excess liquid in either a thermo 

stat or one of several slush baths. The baths consisted of 

a pure liquid in equilibrium with its solid at the melting 

point. 

— ^ 

The system was evacuated to approximately 10 milli­

meter mercury and allowed to reach thermal equilibrium. 

Bromine was then passed over the sample and all volatile 

products were condensed in a trap at liquid nitrogen temper­

ature. The amount of bromine was determined either by 

weighing or by iodimetric analysis. The vanadium was deter­

mined by spectrophotometric analysis. 

Effusion 

A schematic diagram of the effusion apparatus is shown 

in Figure 8. Two cells were constructed, one of pyrex and 
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Figure 8. Effusion Apparatus 

A. Effusion cell 

B. Trap (liquid nitrogen) 

C. Entrance tube 

D. Effused material 

E. Stopcock 

F. Bromine condensing tube 

G. Furnace 
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the other of vycor. The cell A, twenty millimeters in 

diameter, was sealed to a twenty-five millimeter tube. The 

trap B was attached directly to the cell to prevent contam­

ination of the effusing vapors with stopcock lubricant. 

Fresh samples of the material were inserted into the cell 

through the small tube C which was then sealed off. Fresh 

samples were used in each run to ensure that the activity of 

the material remained near unity. The system was evacuated 

to less than 5 x 10"^ millimeter mercury and a preheated 

furnace moved into position around the cello The furnace 

had double windings on each end and an eighth-inch steel 

liner was used to reduce any temperature gradients. The 

temperature was measured with two thermocouples spaced along 

the cell. A maximum variation of + 1° was obtained through 

the use of a Brown proportioning controller. 

The material effusing from the cell condensed in a well-

defined ring D at the cool portion of the tube. The subli­

mate was dissolved in either water or nitric acid. The 

vanadium was then determined spectrophotometrically. 

The tetrabromide of vanadium that had effused into the 

cold trap was decomposed with stopcock E closed. The result­

ing bromine was condensed in side arm F, the arm sealed off 
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and the bromine determined either by weighing directly or 

by spectrophotometric or iodometric analysis. The remaining 

tribromide was washed from the trap with dilute nitric acid 

and determined spectrophotometrically. 

Diaphragm gauge measurements 

The reactions of bromine with the tribromide and tri­

chloride of vanadium were performed utilizing the all pyrex 

system shown in Figure 9. The cell, a null type Bourdon 

gauge, is reproduced in Figure 10. The gauges used in this 

investigation exhibited sensitivities of 0.2 millimeter for 

each millimeter pressure change when viewed with a 17X tele­

scope. The cells could be heated to 450°C with no apparent 

change in the null-point. Pressures from the manometer were 

measured with a Gaertner precision cathetometer having a 

sensitivity of 0.05 millimeter mercury. 

Initially, each cell was thoroughly dried by outgassing 

at 450°C for twelve to fifteen hours at 10 ^ millimeter 

mercury. The material being studied was transferred to the 

cell in an argon filled glove box and then the cell was re-

evacuated for at least six hours at 150° to 200°C. When the 

desired amount of bromine had been distilled into the cell, 
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Figure 9. Pyrex Diaphragm System 

A. Cell 

B. Ballast volume 

C. Manometer 
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Figure 10. Pyrex Diaphragm Cell 

A. Furnace 

B. Thermocouple 

C. Break seal 

D. Glass membrane 

E. Pointer 

F. Sample 

G. Transite shields 
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the vapor was condensed with a dry ice acetone bath. The 

cell was reevaluated and then sealed off.  

The cell was centered in a vertical, twelve inch 

Marshall furnace insulated at each end with a covering of 

transite and asbestos. Three thermocouples were located on 

the cell; one recessed in the bottom to measure the sample 

temperature, another located parallel and in contact with 

the cell wall approximately equidistant from its top and 

bottom, and the third located at the top of the cell. These 

three thermocouples were used to measure the temperature 

gradient along the cell. To reduce the temperature gradient, 

each cell was wrapped in aluminum foil. By adjusting shunts 

on the furnace taps a gradient of 3° to 6° was obtained at 

400 G with the top portion of the cell at the highest tem­

perature. A Rubicon potentiometer permitted direct reading 

of the temperature to 0.2°C. The chrome1-alumel thermo­

couples which were employed in these experiments were cali­

brated using the boiling point of sulfur (444.6°C) and the 

melting point of lead (327.3°C) as reference standards. 

The furnace temperature was controlled by a Honeywell 

Electronik circular indicating proportional controller which 

was used in conjunction with a Raytheon voltage stabilizer. 
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Pressure readings were taken at 10° to 15° intervals by-

alternate ly heating and cooling the cell allowing sufficient 

time for equilibrium to be established. Checks were made to 

ensure equilibrium was obtained by holding the sample at tem­

perature for extended periods of time and measuring the 

pressure until a constant value was reached. 

Preparation of Vanadium(IV) Bromide 

The synthesis of this compound presented more a problem 

of stabilization than of preparation. Two different proce­

dures were developed to condense this material from the vapor 

phase. 

In the first series of experiments vanadium(III) bromide 

was placed in a tube and connected to the vacuum system by 

several cold traps (Figure lia). When the sample was heated 

to 325°C, any vanadium(IV) bromide formed from the dispro-

portionation was collected in the first trap. Bromine vapors 

formed from the decomposition passed through the trap since 

its vapor pressure was relatively high at the temperature of 

the cold trap. The tube was sealed off at A and the tetra-

bromide allowed to decompose by warming to room temperature. 

The bromine resulting from the decomposition was frozen in 
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Figure lia. Vanadium(IV) Bromide Apparatus . 

A. Seal-off point 

B. Bromine trap 

G. Original vanadium(IV) bromide 
trap 

D. Furnace 

E. Vanadium (III) bromide 

Figure lib'. Vanadium(IV) Bromide Apparatus 

A. Powdered dry ice 

B. Vanadium (III) bromide 

C. Furnace 

D. Corks 

E. Vanadium (IV) bromide 
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trap B and then sealed off. Analyses were performed for 

bromine and vanadium in both residues. 

The second series of experiments (Figure lib) were per­

formed in a similar manner except powdered dry ice was placed 

around the reaction tube so that any tetrabromide vapor 

leaving the furnace would be condensed immediately. The 

vapor pressure of bromine was too high to be condensed at 

this temperature (-78°C) when compared to the pressure in 

the system (10~^ millimeter mercury). 
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RESULTS AND DISCUSSION 

Preparation of Halides 

Vanadium chlorides 

In initiating research for the preparation of various 

vanadium chlorides, several methods were investigated which 

used readily available high purity materials as starting 

products. Several such methods have been reported in the 

literature but all seem to possess inherent disadvantages 

which have been observed by subsequent workers. 

Ruff and Lickfett (4, p„ 516) have reported the prepar­

ation of rather pure vanadium(III) chloride by the reaction 

of vanadium(V) oxytrichloride with sulfur. However, McCarley 

and Roddy (73) and Foley et al. (14) have shown that the 

oxydichloride was formed as a by-product. In addition, the 

method presented a formidable problem in the separation of 

the trichloride from any unreacted sulfur. 

In this investigation the method of Bodforss et al. (5) 

consisting of reacting vanadium(III) oxide with carbon tetra­

chloride to produce vanadium(IV) chloride, was attempted 

since quantities of the starting materials were available 
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in high purity. The product produced in each series of 

reactions was decomposed and an analysis made of the result­

ing trichloride. The effect of reaction temperature and 

quantity of carbon tetrachloride on the purity of the final 

product was studied. The results are given in Table 1. 

The values given for the amount of carbon tetrachloride are 

only approximate since the stoichiometry of the reaction was 

not determined. 

Table 1. Experimental Results of the Reaction of Vanadium 
(III) Oxide with Carbon Tetrachloride 

Temp, of Temp. of Amt. of CC14 Analysis of Product 
Reaction CC14 (°C) used Total 
(°c) 

CC14 

% V % CI % Cl/V 

520 25 excess 33.6 65.7 99.3 2.82 
525 25 large excess 34.6 66.0 100.6 2.75 
525 25 90% of theo­ 32.4 67.2 99.6 2.98 

retical 
475 0 30% excess 32.6 67.1 99.7 2.96 
475 0 10% excess 33.0 66.9 99.9 2.91 

For calculation purposes, equations 34 and 35 were used. 

During the thermal decomposition of the tetrachloride and 

2V203 + 4CC14 = 4VC14 + 3C02 + C Eq. 34 

2V203 + 7CC14 = 4VC14 + C + 6COCl2 Eq. 35 
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subsequent outgassing of the trichloride, a white crystal­

line solid was observed to sublime from the product. A 

portion of the white material was separated from the tri­

chloride and purified by recrystalization from an alcohol-

water mixture. A melting point determination gave a value 

of 182° to 184°C. From the melting point data and an obser­

vation of other physical properties, the substance was iden­

tified as hexachloroethane (melting point = 187°C) and 

higher homologs. Complete removal of this material by 

sublimation proved to be an extremely slow process. The 

trichloride obtained by this method would be acceptable for 

general use but a suitable procedure for the complete removal 

of the various chlorocarbons that occur as by-products would 

be required if high purity material were desired. Two 

attempts to prepare vanadium(II) chloride from the trichlor­

ide by the hydrogen reduction method gave chloride to vana­

dium molar ratios for the products of 1.98 to 1.87. 

The method which yielded the highest purity chlorides 

was the most obvious one, that of the direct combination of 

the elements. Representative values for the analysis of the 

trichloride obtained by the chlorination of crystal-bar 

vanadium followed by decomposition are listed in Table 2. 
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The only impurity of any consequence found in the final 

product was carbon which had been carried over during the 

chlorination. Evidence of its presence was found in the 

dichloride preparations where black particles were observed 

in the green solid. In Table 2 is also listed the results 

of the dichloride preparations by the hydrogen reduction of 

the trichloride„ The low result obtained for sample 6 was 

caused by a too high a temperature during the hydrogen re­

duction. 

Table 2. . Analysis of Vanadium(III) Chloride and Vanadium(II) 
Chloride Preparations 

Sample % V % CI Total % Molar Ratio 
number Cl/V 

VCI3--I 32.2 67.7 99.9 3.00 
2 32.1 67.7 99.8 3.00 
3 32.3 67.8 100.1 2.99 
4 32.3 67.5 99.8 2.98 

VC12—5 41.8 58.1 99.9 1.99 
6 42.1 58.0 100.1 1.95 

Vanadium bromides 

Since the chlorination of crystal-bar vanadium produced 

such a high purity product, the tribromide was synthesized 

in a similar manner using bromine as the brominating reagent. 
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A representative analysis of the product obtained is given 

in Table 3. 

The dibromi'de" was made in a similar manner to that of 

the dichloride, a representative analysis is given in Table 

3. 

Table 3. Analysis of Vanadium (III) Bromide and Vanadium (II) 
Bromide Preparations 

Sample % V % Br Total % Molar Ratio 
number Br/V 

VBr3—1 17.5 82.4 99.9 2.99 
2 17.6 82.5 100.1 2.99 
3 17.4 82.5 99.9 3.00 

VBr2--4 24.1 75.8 99.9 2.00 

Solid Solution Studies 

The crystal structures of anhydrous vanadium(III) 

chloride, vanadium(III) bromide, and of some vanadium(III) 

mixed halides were investigated by x-ray powder techniques. 

The diffraction patterns were obtained of samples which had 

been sealed in capillaries with 0.2 millimeter inside 

diameter. A Phillips camera, 11.46 centimeters in diameter, 

was used with nickel-filtered, copper K=< radiation. 
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•National Bureau of Standards tables (74) were used to con­

vert 0 to distances. 

The structures of the vanadium(III) halides were suffi­

ciently similar to permit indexing of powder patterns from 

the known characteristics of vanadium(III) chloride. Klemm 

and Krose (15) have made a crystal study of this material 

and found it to be isostructural with iron(III) chloride. 

The lattice constants for the vanadium compound were listed 

as: aQ  = 6.012 2, cQ  = 17.34 2. 

The lattice parameters in this investigation were 

obtained by using the method of Taylor and Sinclair (75), a 

detailed discussion of which can be found in the Appendix. 

In addition, all  fi lms were corrected for shrinkage effects. 

The parameters for all of the solid solutions are given 

in the Appendix along with the values obtained for the tri­

chloride and tribromide in this Laboratory. The relation­

ship of these data to the corresponding values of the molar 

ratio of halogen to vanadium is given in Figure 12. In the 

majority of cases the lattice parameters were known with 

greater precision than the composition. The method for deter 

mining the composition is discussed in the Appendix. 

The solutions all possessed the bismuth(III) iodide 
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Figure 12. Lattice Constants vs. Composition in the System \7Cl3-VBr3 
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structure, a structure exhibited by many of the metallic 

halides with a formula of MX3. The structure consists of a 

double-layer lattice of halogens based on hexagonal closest 

packing arrangement. In this type of packing arrangement 

are located holes in a plane midway between those of the 

close-packed atoms. Some of these holes, called octahedral 

holes, may be occupied by metal atoms, forming a composite 

layer X-M-X consisting of two adjacent layers of halogen 

atoms with a layer of metal atoms between them. Since the 

primary valencies of the M and X atoms are satisfied within 

such a layer, there being only van der Waals forces between 

adjacent layers, it may be regarded as an infinite 2-dimen­

sional molecule. The composition of the layer (i.e. the 

ratio of M:X atoms) is determined by the proportion of 

octahedral holes occupied by metal atoms. In the layer 

structure being considered, the maximum number of octahedral 

holes that may be occupied is one-half of the total. In the 

trichloride structure the vanadium atoms occupy two-thirds 

of the octahedral interstices within the layer containing 

the metal atoms. 

The structures of VClgl and VI3 were impossible to 

obtain owing to the extreme difficulty in isolating these 
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compounds. 

The "a0" lattice constant of the solutions showed .a 

slight positive deviation from ideal behavior. The "c0" 

lattice constant exhibited a similar although somewhat 

larger positive deviation from ideality. The effect of these 

variations on the axial ratio c0/a0 can be seen in Table 4. 

The mixed halide, VCl^Br, was in fairly close accord with 

that which would be expected from a solid solution of the 

same composition. The somewhat larger "cq" deviation could 

be explained by the fact that "a0" is effectively determined 

by the V-X distance whereas nc0" is also dependent on the 

closeness of packing of the halogen layers. Since the tri­

chloride has a structure where the metal is located in alter­

nate layers, the introduction of a larger halogen atom will 

tend to exert its influence to a greater extent in the ,rc0" 

direction by separating the layers. This influence will 

result in a somewhat larger increase in the "c0
n lattice 

parameter than the "a0" parameter. 

As expected, VBrgI exhibited lattice constants some­

what larger than those of the tribromide. Even though the 

comparison of these parameters with those of the triiodide 

can not be made, one can probably assume that solid solution 
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Table 4. Lattice Constants of Vanadium(III) Chloride and 
Bromide Solid Solutions 

Sample Molar Lattice Parameters 
number ratio 

c0$) (Cl/V) a0(A) c0$) 0
 

0
 

VClo 3.00 6.045 17.45 2.886 
19 2.95 6.063 17.48 2.883 

9 2.78 6.090 17.58 2.886 
39 2.71 6.106 17.66 2.892 
10 2.60 6.108 17.69 2.896 
41 2.55 6.124 17.74 2.896 
38 2.24 6.149 17.82 2.898 
12 2.25 6.146 17.81 2.897 

6 . 2.08 6.164 17.86 2.897 
34 2.01 6.166 17.91 2.904 
11 2.00 6.180 17.91 2.898 
42 1.99 6.184 17.92 2.897 
13 1.75 6.213 17.99 2.895 
43 a 1.50 6.240 18.08 2.897 
14 1.45 6.249 18.11 2.898 
21 1.18 6.278 18.17 2.894 
17 1.12 6.285 18.20 2.895 
25a 1.19 6.293 18.20 2.892 
22 1.04 6.304 18.23 2.891 
15 1.08 6.293 18.21 2.893 
44* 0.94 6.311 18.23 2.888 

3 0.67 6.338 18.36 2.896 
20 0.63 6.346 18.37 2.894 
18 0.42 6.366 18.41 2.891 
16 0.26 6.380 18.45 2.891 
47b 0.07 6.394 18.47 2.888 
48b 0.16 6.383 18.46 2.892 
49b 0.13 6.390 18.46 2.888 
50b 0.04 6.396 18.48 2.889 
51b 0.28 6.371 18.42 2.891 
52a 0.49 6.350 18.39 2.896 
53a 0.74 6.328 18.31 2.893 

VBrg 0.00 6.400 . 18.53 2.895 

^Transport of solid solution with bromine 

^Equilibration of vanadium (III) bromide with chlorine 



www.manaraa.com

90 

formation would occur for this system, since they would be 

expected to behave in a similar manner as the trichloride-

tribromide system. . The lattice parameters for the stoichio­

metric compounds are listed in Table 5. 

Table 5„ Lattice Parameters of the Stoichiometric Compounds 
of the Vanadium(III) Halides 

Compound ao $) cotf) 0
 

0
 

VCI3 6.045 17.45 2.892 

VBr3 6.400 18.53 2.894 

_ VCl2Br 6.186 17.90 2.894 

VBr2I 6.589 19.30 2.933 

The values listed in the table for VCI3 are approximately 

one per cent higher than those reported by Klemm and Krose. 

Since no analysis was listed for their product, the differ­

ence-may be due to impurities present in their sample. 

Transport Reaction Studies 

The preparation of relatively large crystals of the di-

and trichlorides and of the di- and tribromides of vanadium 

was attempted via the transport process. The majority of 

reactions were performed in the presence of either chlorine, 
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bromine, or iodine to facilitate the formation of a volatile 

species. 

Vanadium(III) chloride 

Since the synthesis of this material is almost always 

performed by the thermal decomposition of the tetrachloride, 

any large crystals are quite difficult to prepare. Single 

crystals can not be obtained by a simple vaporization process 

since the trichloride undergoes disproportionation at ele­

vated temperature to yield the dichloride and the tetra­

chloride. Knowledge of the occurrence of this reaction was 

used in the first series of experiments. 

As the trichloride was known to exhibit extensive dis­

proportionation at temperatures over 425°C, the sample was 

heated to 450°C. The opposite end of the evacuated sealed 

pyrex tube was maintained at 160° to 170°C. The decomposi­

tion of the tetrachloride in this temperature range has been 

shown to be quite rapid. Hence, the disproportionation of 

VCI3 occurred at 450°C (equation 36) and the decomposition 

VCI3 (s) = VCl4(g) + VCl2(s) Eq. 36 

VCl4(g) = VCI3(s) + %Cl2(g) Eq. 37 

of VCI4 at 160° to 170°C (equation 37) to produce a net 
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transfer of the trichloride from the hot to the cool end of 

the tube. After approximately 24 hours, 34 milligrams of 

material were transported. The shiny almost black platelets 

located in the cooler portion of the tube analyzed correctly 

as the trichloride. The addition of chlorine did not mater­

ially increase the rate of transfer. This effect may be 

explained by noting that the addition of chlorine would 

increase the formation of the tetrachloride but would hinder 

its decomposition. 

The introduction of iodine into the sample produced no 

net increase in the quantity of material transferred. The 

anticipated formation of the mixed halide vapor species did 

not seem to occur. 

When transport experiments were performed in the pres­

ence of bromine, a four to five gram sample could be trans­

ported in a 24 hour period. The sample could be at any 

temperature varying from 325° to over 450°C with the cooled 

portion of the tube at room temperature. The results of 

these experiments (Table 6) show that some exchange had 

occurred between the bromine and chloride in the deposited 

material. The transport process occurred through the re­

action 
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Table 6. Analysis of Reaction Product of the Transport of Vanadium(III) 
Chloride with Bromine 

V.P. of Reaction % V % CI % Br Total Molar Ratio aQ cQ 

Br2 temp. % Cl/V X/V d 0 

(mm. Eg) (°C) A A 

220 400 31.8 65.5 2.5 99.8 2.96 3.01 6.06 17.46 

67 400 32.1 66.2 1.6 99.9 2.97 3.00 6.08 17.47 
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VCl3(s) + %Br2(g) = VCl3Br(g) Eq. 38 

and the decomposition by the reaction 

VCl3Br(g) = VCl3_xBrx(s) + fci2(g) + ~2iBr2(g) . Eq. 39 

The bromine contaminent would present further problems if 

high purity trichloride was desired. The preparation of 

large single crystals by this method could not be obtained 

since the transfer effect was much too rapid for slow growth. 

Vanadium(III) bromide 

Relatively large black platelets approximately five 

millimeters square could be grown when the sample was at 

300°C and the cooler portion of the evacuated sealed tube 

was at room temperature. The tribromide could be sublimed 

in the absence of bromine under the same conditions but only 

small crystals were obtained. Since the tribromide had such 

a low vapor pressure at these temperatures, sublimation 

could not have produced such a rapid transport (four to 

five grams in a 24 hour period). From vaporization char­

acteristics of the tribromide, which will be discussed later, 

the formation of the crystal phase can be explained as a 

true transport process. Part of the tribromide decomposed 
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at the hotter portion of the tube to yield bromine (equa­

tion 40). This bromine then reacted with excess tribromide 

to form the more stable (at temperatures over 500°K) and 

more volatile tetrabromide (equation 41). This volatile 

VBrg (s) = VBr2(s) + ^Br^(g) Eq. 40 

VBr3(s) + %Br2(g) = VBr^(g) Eq. 41 

compound diffused to the cooler portion of the tube where 

it decomposed to yield the tribromide, and the transport 

process had occurred. 

Vanadium(II) chloride 

The transport reactions of this solid were investigated 

with bromine and iodine added to facilitate the formation of 

a vapor species. 

The reaction of the dichloride with excess bromine was 

performed with the sample at approximately 375°C and the 

cooler portion of the tube at room temperature. The vapor 

pressure of bromine was 220 millimeters mercury. Complete 

transfer was obtained in twelve hours but the material was 

a black-colored sublimate which analyzed as a compound of 

the formula VClgBr. A discussion of the x-ray diffraction 

analysis of this material was given in the section on solid 
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solution studies. Several thermal decompositions were per­

formed on this material under a working vacuum at tempera­

tures ranging from 600° to 750°C. The residues seemed to 

consist of a solid solution of the dichloride and dibromide 

of vanadium. From the analysis, the vanadium content re­

mained constant at a value of 36.3 per cent while the chlor­

ide and bromide values varied in such a manner that the 

total halogen to vanadium molar ratio approximated two. 

Transport reactions were attempted in a straight evac­

uated tube with the dichloride at 540° to 570°C while the 

other end of the tube was at 800°C. Three separate experi­

ments were performed with vapor pressures of bromine ranging 

from 15 to 210 millimeters mercury. There was evidence of 

reactions occurring in each case since the light green color 

of the dichloride had darkened considerably, but no trans­

port was observed. 

When iodine was used, the growth rate was slow enough 

to yield green platelets approximately four millimeters 

square when the sample temperature varied between 350° C and 

400°C and the decomposition temperature was 275°C. X-ray 

patterns proved this material to be the dichloride. Although 

the exact nature of the vapor species was not determined, 
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its composition can be estimated by comparing it with other 

systems studied in this investigation. The direct vaporiza­

tion of the dichloride can be eliminated since its vapor 

pressure at the temperatures in question was negligible. 

The presence of any vanadium(III) compound in the vapor phase -

was rather remote since its stability at the temperatures in 

question was very low. Hence, by a process of elimination, 

the presence of a vanadium(IV) compound must be assumed, and 

the most likely one would be that of the mixed halide, 

VCl2l2. 

Vanadium(II) bromide 

Using a procedure identical to the one used for the di­

chloride, the reaction of the dibromide with iodine proceeded 

to give a mixed halide of the formula, VBr2I. A discussion 

of the x-ray analysis of this material was discussed in the 

section on solid solution studies. The vapor species during 

the transport probably consisted of the mixed halide, VBr2I2. 

Vapor Pressure of Vanadium(II) Chloride and Bromide 

The vapor pressure of these two substances was investi­

gated using the method developed by Knudsen. By substitu­

ting the various geometric factors of the vycor effusion 
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cell into the basic equation for the vapor pressure, the 

following expression results ; 

Pmm. - (6-01 X Eq. 42 

where G is the weight of effused material in grams, T is 

the absolute temperature, M is the molecular weight of the 

vaporizing species, and t is the time of effusion in seconds. 

The results of a study of the vaporization of these two 

substances are plotted in Figures 13 and 14. The vapor 

species were assumed to be monomers since the results obtained 

by Sime and Gregory (76) indicated that the vapor over 

chromium(II) bromine was largely monomer. Also, the mass 

spectrometer has been used to study the iron(II) halides 

(77) and the results indicated the monomer was the predom­

inant vapor species. The dashed line on the figures repre­

sents the pressure if complete dimerization was assumed. 

The accomodation coefficient was assumed to be approximately 

one. The pressures measured in the cell were assumed to be 

equilibrium pressures owing to the consistency of the results 

and to the good agreement with the transpiration data on 

vanadium(II) chloride by Oranskaya and Perfilova (24, p. 

257). The lines drawn through the experimental points can 
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Figure 13. Vapor Pressure of Vanadium(II) Chloride 
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Figure 14. Vapor Pressure of Vanadium(II) Bromide 
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be represented by an equation of the form: 

log P™. - -A/T + B Eq. 43 

from which the standard enthalpy of vaporization can be 

obtained. The results, valid in the temperature range of 

750° to 950°K, are summarized in Table 7. 

No values have been reported in the literature for any 

of the vaporization characteristics of the dibromide but 

just recently Oranskaya and Perfilova (24) have reported data 

on the vapor pressure and related thermodynamic values for 

the dichloride. Their values, obtained by transpiration 

experiments, are also given in Table 7 for comparison. 

Table 7. Vaporization Data for Vanadium(II) Chloride and 
Bromide 

Sample A B AH AS 
(kcal/mole) (eu) 

VC12 (This 
work) 

VCl2(0&P) 

VBr% 

9,804+300 

9,721+500 

10,460+350 

8.713+0.200 

8.605+0.300 

9.081+0.300 

44.8+1.4 

44.2+2.2 

47.8+1.6 

26.6+0.8 

27.6+1.2 

28.3+0.8 

The bond energies may be calculated from the vapor près 

sure studies if several other thermodynamic data are known 

or can be estimated. The average bond energy may be defined 
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(78) as the change in enthalpy resulting from the dissocia­

tion of the gaseous compounds into atoms at 298°K. For the 

vanadium(II) halides, the V-X bond energy is equal to one-

half the enthalpy change for the reaction 

VX2(g) = V(g) + 2X(g). Eq. 44 

To calculate the enthalpy change for this reaction, the heat 

of sublimation must be known at 298°K. To estimate this 

quantity, ACp for sublimation was assumed to be minus eight 

calories per degree by comparison with similar halides (79). 

The heat of sublimation at 298°K can be estimated if the 

sigma function, discussed in the introduction, is used. If 

a plot of sigma vs. reciprocal temperature is constructed, 

a straight line is obtained with a slope equal to AH° and 

an intercept equal to I. Sigma function plots for the di-

chloride and the dibromide are given in Figures 15 and 16; 

the values for AHq and I are given in Table 8. Equations 

for AH^ are also given. 

Table 8. Sigma Function Values for Vanadium(II) Chloride 
and Bromide 

Sample 
(cal.) I 

AH29Q 
(cal.) 

o 
Eq. for AH-p 

(cal.) 

vci2 50,600 -80.6 48,500 H£ = 50,600-8T 

VBr2 52,800 -81.4 50,700 Hg = 52,800-8T 
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Figure 15. Sigma Function Plot for Vanadium(II) Chloride 
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Figure 16. Sigma Function Plot for Vanadium(II) Bromide 
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The heats of atomization of the dichloride and di-

bromide are calculated below. 

Reaction 4H2gg(kcal.) Reference 

vci2(g) = VCl2(s) -48.5 This work 

VCl2(s) = V(s) + Cl2(g) 108 (10) 

V (s) = v(g) 122 (80) 

ci2(g) = 201(g) 58 (78) 

vci2(g) = V (g) + 2Cl(g) 239.5 Eq. 4! 

VBr2(g) = VBr2(s) -50.7 This work 

VBr2(s) -= V(s) + Br2(l) 100 (10) 

V(s) = V(g) 122 (80) 

Br2(l) = 2Br(g) 53.4 (78) 

VBr2(g) = V(g) + 2Br(g) 224.7 Eq. 46 

A V-Cl bond energy of 120 kilocalories can be calculated 

from equation 45. A value of 112 kilocalories can be calcu­

lated for the V-Br bond energy using equation 46. These two 

bond energies can be compared with values calculated by 

means of an equation developed by Pauling (81). In the 

equation, the dissociation energies and electronegativities 



www.manaraa.com

110 

D(V-X) = %|D(V-V) + D(X-X)j + 23(xx-xv)2  Eq. 47 

of the halogens and vanadium were those listed above and iri 

Pauling's book. The metal-metal single bond energy was 

taken as one-sixth of the heat of atomization of vanadium 

(82). The values calculated from equation 47, 84 kilocal­

ories for the V-Cl bond and 69 kilocalories for the V-Br 

bond, are considerably lower than the ones given in the 

table. Allen (83) gives an excellent discussion of the cal­

culation of transition metal bond energies and states that 

the bond energy is greater as the valency of the metal de­

creases. Then to, the values for the heats of formation of 

the halides were only estimated and may be in error by as 

much as 15 kilocalories. 

Pauling's value for the electronegativity of vanadium, 

1.6, was calculated for the tetravalent ion.- By substituting 

the V-Cl bond energy of 120 kilocalories into. Pauling's 

equation, an electronegativity of 1.2 was obtained. This 

lower value is more consistent when compared to values that 

have been experimentally determined for other metal halides. 

For instance, in the iron(II) halide system, Pauling lists 

a value of 1„7 for the electronegativity of iron but Allen 

(83, p. 1645) calculated a value of 1.3. Another example 
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can be found in the chromium (I I) halide system where the 

value obtained by Pauling of 1.6 is 0.4 units higher than 

that experimentally determined by Sime (76) . 

Vaporization of Vanadium(III) Chloride 

The Knudsen effusion method was used to determine the 

vapor pressure of this substance. In addition, values were 

obtained for the disproportionation process during the same 

set of experiments. 

When the various geometric factors of the pyrex cell 

were substituted in the basic effusion equation for the 

vapor pressure, the following equation was obtained; 

P™. = (7.31 X ip2) (G) (T/M)% Eq- 48 

where the terms have the same meaning as previously defined. 

The vapor pressure of the trichloride is plotted 

against reciprocal temperature in Figure 17. The pressures 

were calculated assuming that the vapor over vanadium(III) 

chloride consisted of monomer. If complete dimer formation 

occurred, the slope of the line and hence the heat of vapor­

ization would not be effected but the vapor pressure would 

differ by a factor of (2)^. The entropy of vaporization 

would also show a considerable change. The dashed line 
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of Vanadium(III) Chloride 
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represents the vapor pressure if complete dimerization had 

occurred. 

The fact that the measured pressures were independent 

of effusion hole size showed that the accomodation coeffi­

cient for the vaporization process was near unity. There­

fore, the steady state pressures were assumed to be true 

equilibrium pressures. 

The equation of the vapor pressure can be expressed in 

the form: 

-9777 
log Pyclg = X— + 11,20 (in nmie) Eq. 49 

which yielded a heat of vaporization of 44.7 + 1=4 kilocal­

ories and an entropy of 38.0 + 0.8 entropy units. Equation 

49 is valid in the range of 625 to 740°K and has an error 

of no more than three per cent. The results of a sigma plot 

are shown in Figure 18. The equation for obtained from 

the plot can be written as 

Ah£ = 50,000 -  8T, (in cal.) Eq. 50 

where ACp was assumed to be minus eight calories per mole 

degree. The value of I  was determined to be -108.2. A 

calculation of the bond energy resulted in a value of 100 

kilocalories, somewhat less than that obtained from the 

vaporization of vanadium(II) chloride. This value seemed 
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Figure 18. Sigma Plot for Vanadium(III) Chloride 
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to support Allen's conclusions that the bond energy de­

creases with an increase in valence. 

The vapor pressure for the disproportionation is plotted 

against reciprocal temperature in Figure 19. The pressures 

were calculated again assuming that only monomer was present 

in the vapor phase. At the higher temperatures are plotted 

(dotted line) the results of the disproportionation pressure 

of the trichloride as determined by Oranskaya et al. (18). 

The slope and therefore the heat of vaporization agreed 

quite favorably but there was a noticeable difference in the 

entropy of vaporization. The higher results obtained by 

Oranskaya_et al. may be due to contamination of their start­

ing material with a more volatile oxychloride of vanadium. 

The presence of impurities in the carrier gas would also 

produce the same results. Then too, the difference may be 

due to a low accomodation coefficient in the effusion exper­

iments. If this was the case, the apparent vapor pressure 

would be lower than the true equilibrium pressure. Since 

the values obtained by the effusion method were considerably 

lower than the ones obtained by transpiration, the accomo­

dation coefficient for the disproportionation reaction may 

have been much less than unity. In addition, the temperature 
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Figure 19. Disproportionation Pressure of Vanadium (III) 
Chloride 
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ranges studied did not overlap except at relatively high 

values for disproportionation pressure in the effusion 

measurements. When measured effusion pressures are rela­

tively high, it has been observed (84) that apparent vapor 

pressure tends to fall off. In addition, since the pres­

sures were in the lower regions of feasibility for the 

transpiration method, the relative error of the data obtained 

by Oranskaya _et al. were expected to be quite large. 

The equations of the lines plotted in Figure 19 and the 

heats and entropies of vaporization obtained from this inves­

tigation and those obtained by Oranskaya £t al. are given in 

Table 9. The values listed in the table are precise to 

approximately four per cent. 

Table 9. Disproportionation Data for Vanadium(III) Chloride 

Investi- Equation for Pnraii Temp. AH AS 
gator range (kcal.) (eu.) 

W 

Oranskaya log P = "8^° + 11.58 700-900 38+1 39.6+1 

This work log P = + 9.84 625-740 36+1 32+1.2 



www.manaraa.com

121 

Vaporization of Vanadium(III) Bromide 

The vaporization of this material was studied by use of 

the effusion method and the transpiration method. Values 

were obtained for the simple vaporization, the decomposition, 

and the disproportionation of the tribromide during the same 

series of experiments. 

Effusion Studies 

Figure 20 is a plot of the vapor pressure of the tri­

bromide vs. reciprocal temperature. In the calculation of 

the vaporization, the assumption was made that there was no 

dimer formation present in the vapor phase. If the vapor 

were entirely dimer, no change would result in the slope of 

the line and hence in the heat of vaporization, but the 

actual vapor pressure would differ by a factor of (2)2. 

The accomodation coefficient for the vaporization pro­

cess was near one as the measured pressures were independent 

of orifice size; hence the steady state pressures were 

assumed to be equilibrium pressures. 

The equation for the vaporization of the tribromide can 

be expressed in the form: 
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-9470 
log PvBr3 = — + H.12, (in mm.) Eq. 51 

from which was calculated a heat of vaporization of 43.3 + 

1.2 kilocalories and an entropy of vaporization of 37.7 + 1 

entropy units. The vapor pressure calculated from the equa­

tion has an estimated error of about three per cent. The 

temperature interval for the equation is 590° to 700°K. 

The results of a sigma plot are given in Figure 21. 

The equation for obtained from the plot can be written 

as 

AHj = 52,900 - 8T, (in cal.) Eq. 52 

where ACp was assumed to be minus eight calories per mole 

degree. The value of I determined was -117.0. 

The results of the disproportionation, previously unre­

ported in the literature, are plotted in Figure 22. These 

values may be expressed as the straight line function 

-7460 
log Pygr^ = T +8.65 (in mm.) Eq. 53 

for the temperature range of 590° to 700°K. The value 

obtained from this expression for the heat of disproportion­

ation was 34.1 + 1 kilocalories while the entropy was 26.4 + 

0.7 entropy units. A very slight variation was noted in the 

vapor pressure when the effusion hole size was changed. The 
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Figure 21. Sigma Plot for Vanadium(III) Bromide 
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Figure 22. Disproportionation Pressure of Vanadium (III) 
Bromide 

0 - Pyrex cell 

A - Vycor cell 
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values obtained must not have been equilibrium values owing 

to a low accomodation coefficient. 

During the course of study on the vaporization charac­

teristics of vanadium(III) bromide, it was noted that 

decomposition was occurring according to the following 

equation. This phenomenon was not observed in the case of 

VBrg(s) = VBr2(s) + %Brg(g) Eq. 54 

the trichloride. Analysis was performed for bromine; the 

amount resulting from the decomposition was obtained by sub­

tracting from the total number of moles of bromine one-half 

the number of moles of vanadium determined from the dispro­

portionation. This correction was necessary since bromine 

also resulted from the decomposition of the tetrabromide 

,according to the equation 

VBr^(g) = VBr3(s) + %Br2(g). Eq. 55 

A plot of the bromine pressures so obtained vs. reciprocal 

temperature is given in Figure 23. When a least squares 

analysis of the data was made, the equation representing 

the straight line through the points was 

-5090 
log Pgr2 = —~— +5.23 (in mm.) . Eq. 56 

The heat and entropy of decomposition as calculated from 
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Figure 23. Decomposition Pressure of Vanadium(III) 
Bromide 
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the data were 23.2 + 1 kilocalories and 10.7 + 0.5 entropy 

units respectively. The temperature range of the equation 

is 590° to 700°C. Somewhat more scatter was observed in 

these values and there was observed a slight difference in 

the vapor pressure when a change in orifice size was made. 

These values indicated that the accomodation coefficient was 

much less than unity and that equilibrium pressures were not 

observed for bromine. The scattering of the data may also 

have been the result of solid solution formation between the 

remaining tribromide and the dibromide that was formed dur­

ing the decomposition. If solid solutions were present, a 

lower activity of the tribromide phase would have resulted 

and hence a change in the decomposition pressure would have 

been obtained. X-ray examinations of the residues remaining 

after effusion measurements indicated that solid solution 

formation had not occurred. The uncertainties in the accomo­

dation coefficient tend to make the Knudsen method unreliable 

for these decomposition measurements. 

Transpiration measurements 

Since the values obtained from the effusion experiments 

for the decomposition and disproportionation reactions 
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depended to such a great extent on the accomodation coef­

ficient, a further verification of these values was deemed 

desirable. 

The calculations for the transpiration method were 

performed using the method given by Thomson (85). Dalton's 

law and the ideal gas law were assumed to be valid. The 

vapor pressure of the compound was obtained from the equa­

tion 

ps = PS/(K + 1) Eq. 57 

where 

K = (MW) (Vm) (Pm-Pw)/gRTm Eq. 58 

and where Ps was the total pressure in the cell, ps was the 

vapor pressure of the compound, MW was the molecular weight 

of the vapor, Vm was the measured volume from the wet test 

meter, Pm was the total pressure at the meter, p# was the 

vapor pressure of water at Tm, g was the grams of material 

transported, and Tm was the temperature of the meter. 

The simple vaporization was not obtained in these exper­

iments as the vapor pressure of the tribromide was too low 

to be measured. 

A plot of the disproportionation pressure vs. recipro­

cal temperature is given in Figure 24. The equation of the 
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straight line drawn through the points can be expressed as 

-8240 
log PyBr4 = —Y— + 8.47 (in mm.) Eq. 59 

for the temperature range 590° to 697°K. The maximum error 

in the equation was approximately four per cent. A heat of 

reaction of 37.7 + 1.3 kilocalories and an entropy of reac­

tion of 25.5 + 0.8 entropy units can be calculated from this 

expression. These results gave support to the conclusion 

that the accomodation coefficient was less than unity in the 

effusion studies. Further support was found in the decompo­

sition vapor pressure plotted in Figure 25. When a least 

squares analysis of this plot was made, the equation of the 

line was calculated to be 

log PBr>2 = + 5.02 (in mm.) Eq. 60 

for the temperature range of 590° to 700°K. The heat and 

entropy of reaction as calculated from this equation were 

23.1 + 0.9 kilocalories and 9.3 + 0.4 entropy units respec­

tively. Again, the results were somewhat lower than those 

obtained from effusion experiments. 

Vanadium(IV) Bromide and Mixed Vanadium Halides 

At elevated temperatures, vanadium(III) bromide reacted 

with bromine to form vanadium(IV) bromide. Evidence of its 
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Figure 25. Decomposition Pressure of Vanadium(III) 
Bromide 
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formation had been observed in the gas phase. At tempera­

tures at which it was expected to condense, the material was 

apparently unstable with respect to solid tribromide and 

bromine. For the reaction 

VBr3(s) + %Br2(g) = VBr^(g), Eq. 61 

the equilibrium constant may be written as 

K = PvBr4 Eq. 62 

where pressures have been substituted for activities and the 

activity of the solid was taken as one. Evidence that this A 

reaction was of importance in the vaporization of vanadium 

(III) bromide in bromine was provided by measuring the total 

pressure above the tribromide at various bromine pressures. 

The tribromide pressure was found to be proportional to the 

square root of the bromine pressures. The vapor pressures 

were measured by the pyrex diaphragm gauge and by the trans­

piration method using bromine as a carrier gas. 

Pyrex diaphragm gauge measurements 

Five reactions of the tribromide were performed with 

bromine using this method. The only reaction that was con­

sidered to be occurring in the cell was that of equation 61. 
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The simple vaporization of the tribromide was neglected 

since it exhibited a vapor pressure of less than 4 x 10 

millimeter mercury at 700°K, the maximum temperature to 

which the cell was heated. The temperatures were low 

enough so that the dissociation of bromine molecules into 

o 
atoms (log Kp = -6.0 at 640 C) could be neglected (86). 

The decomposition of the tribromide was also neglected as 

it would be suppressed by the bromine present, except at 

very high temperatures outside the range of these measure­

ments . 

The equilibrium constant for the reaction was determined 

in the following manner. If the original bromine pressure 

in the cell was P]3r2 at ^1» then after equilibrium had been 

established in the cell at T2, the total pressure will be 

given by 

pt - (rf) PBr2 + %PVBr4 ' E1- 63 

assuming the gases exhibited ideal behavior. The pressure 

of the tetrabromide was calculated by rearranging equation 

63 to 

pVBr4 = 2 (PT " PBr2) ' Eq* 64 

The actual pressure of bromine was then calculated from the 
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equation 

pBr2 = (i^) PBr2 " %pVBr4" E1- 65 

Difficulty was experienced during the runs as the residual 

bromine pressure after the reaction was always somewhat 

greater than that originally introduced into the cell. The 

increase in pressure was assumed to be the result of hydrogen 

bromide formed by slight hydrolysis of the sample» All 

values reported in the Appendix were corrected for this re­

sidual pressure. These values were obtained by either con­

densing the bromine in the cell with dry ice chloroform 

mixtures and reading the residual pressure directly, since 

hydrogen bromide does not condense until a temperature of 

-67°C is attained, or by noting the increase in pressure as 

the cell was heated to a temperature sufficient to cause 

hydrolysis but not high enough for the reaction to commence. 

In Figures 26, 27, and 28 are plotted log K vs. recip­

rocal temperature for the reaction of the tribromide, the 

trichloride, and the mixed halide of vanadium. In Table 10 

are listed the values for the heat of reaction along with 

the equation for the equilibrium constant as a function of 

temperature. An average of the values for the tribromide 

yielded a value of 15.8 + 1.5 kilocalories for the heat of 
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Figure 26. Cell Reaction of Vanadium(III) Bromide 
with Bromine 
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Figure 27. Cell Reaction of Vanadium(III) Chloride 
with Bromine 

0 - Ascending temperature 

A - Descending temperature 
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Figure 28. Cell Reaction of the Mixed Halide, VClgBr, 
with Bromine 

0 - Ascending temperature 

A - Descending temperature 
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Table 10. Cell Reactions of Vanadium(III) Halides with 
Bromine 

Sample Pressure Equation for K AH 
of Br2 (Least squares) (Real.) 
(mm.) 

VBr3 43.6 log K = +5.23 16.0+1.5 

-3463 
VBr3 88.0 log K =—f—+5.22 15.8 + 1.5 

-3447 
VBr3 107.0 log K = +5.22 15.8+1.5 

-3454 
VBr3 124.0 log K = —— + 5.23 15.8 + 1.5 

-3470 
VBr3 163.0 log K = ~ +5.27 15.9+1.5 

-3450 
VC13. 140.6 log K = ^  +5 .48  15 .8+1.5  

-3460 
VCl2Br 120.0 log K = Z + 5.30 15.8 + 1.5 

reaction and yielded an equation for the equilibrium con­

stant of 

-3465 
log K = Y + 5.23. Eq. 66 

The heats of reaction for the three halides are essentially 

identical. This similarity was rather unexpected since the 

lattice energy of the trichloride was somewhat larger than 
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that of the tribromide. If the reactions proceeded in the 

following manner, 

one would expect the heat of vaporization of the trichloride 

to be larger than that of the tribromide (proven in this in­

vestigation) and that the heats of reaction for processes 68 

and 70 would be comparable; hence a somewhat larger heat of 

reaction would result for the trichloride system. Since 

this was not the case, one must conclude that process 68 

exhibited a more negative heat of reaction than did process 

70. When heats of reaction were calculated for these two 

processes, a value of -28.9 kilocalories was obtained for 

equation 68 and a value of -27.5 kilocalories was obtained 

for equation 70, supporting the conclusions given. 

The values of the equilibrium constant showed a change 

in slope at the higher temperatures. The data gave conclu­

sive proof that the bromine in the cell had been depleted 

enough so that the decomposition reaction of the tribromide 

had become important. 

VCl3(s) = VCl3(g) 

VCl3(g) + W2(g) = VCl3Br(g) 

VBr3(s) = VBr3 (g) 

VBr3(g) + %Br2(g) = VBr4(g). Eq. 70 

Eq„ 69 

Eq. 67 

Eq. 68 
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Transpiration experiments 

In the transpiration method the total pressure in the 

system was assumed to be the sum of the three gas pressures 

as shown in the following equation. 

pt = pVBr3 + PvBr4 
+ PBr2 

Eq* 71 

The following expression may also be written 

PVBr3 + PVBr4 = PT ' Eq" 72 

where nv was the total number of moles of vanadium trans­

ported by ng^g moles of bromine. The value of ny was deter­

mined by the amount of vanadium(III) bromide deposited in 

the cold trap. The equilibrium constant for reaction 61 may 

be written in the form 

pVBr4 " K(p
Br2

)%- 73 

I f ,  in  addi t ion,  the  t r ibromide was undergoing s imple  vapor­

ization, the equation may be written as 

P(VBr4 + VBr3) = K(PBr2)^ + P^ Eq. 74 

where P(VBr^ + VBr3) was the total quantity of halide vapor-

ized. When a plot of P(VBr^ + VBr3) vs. (Pgr2) 2 was ma<*e 

at a constant temperature, a straight line resulted, the 

slope of which was equal to K and the intercept was equal 
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to •PBr3* 

A plot (Figure 29) relating the apparent tetrabromide 

vapor pressure to the flow rate exhibited the expected 

behavior of high values at low flow rates and low values at 

high flow rates. The equilibrium pressures of the tri- and 

tetrabromide were measured at three temperatures and four 

different pressures. 

For the determination of the equilibrium constant as 

given in equation 74, the quantity P(VBr^ + VBrg) was plot­

ted vs. the square root of the bromine pressure, at temper­

atures of 515°, 551°, and 585°K (Figure 30). The lines in 

this figure are represented by equation 74. The slope of 

the line was K and the intercept was the vapor pressure of 

vanadium(III) bromide. As can be seen in the figure, the 

vapor pressure of the tribromide can be neglected at these 

temperatures. Table 11 lists the values obtained for K at 

the temperatures in question. Figure 31 is a plot of log K 

vs. reciprocal temperature. The straight line drawn through 

the points has the equation 

log K = "3455 + 522 . Eq. 75 

The free energy, as given by the equation above, can be 
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Figure 29. Apparent Vanadium(IV) Bromide Vapor Pressure 
vs. Flow Rate 

A. 0.217 atm. .bromine 

B. 0.111 atm. bromine 

C.  8 .9  x  10 ' 1  atm.  bromine 

D. 1.58 x 10"2 atm. bromine 
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Figure 30. Determination of Equilibrium Constant for the 
Reaction of VBrg with Bromine 
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Figure 31„ Plot of Equilibrium Constant for the Reaction 
of VBrg with Bromine 
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Table 11. Equilibrium Constants for Transpiration Reaction 

Temp. 1/TxlCp K -log K 
(°K) (OR)'1 (atm.)^xlO2 

515 1.941 3.16 1.500 

561 1.782 11.26 0.949 

587 1.703 21.1 0.676 

expressed as 

AF° = 15,800 - 23.8T. Eq. 76 

Equations 75 and 76 agreed quite favorably with those obtained 

from the Bourdon gauge measurements. A verification of these 

results was made by comparing the heats of reaction of the 

processes that occur during the vaporization of vanadium(III) 

bromide. From the transport data of the tribromide using 

helium as the carrier gas, the following equations and their 

respective heats of reaction can be written: 

„ AH° 
Equation (Real.) 

2VBr3(s) = VBr2(s) + VBr4(g) 37.7 ± 1.3 Eq. 77 

VBrg(s) = VBr^(s) + ^Br^(g). 23.1 + 0.9 Eq. 78 

If equation 78 is subtracted from equation 77, then the 

equation for the process under investigation results. 

VBrg(s) + %Br2(g) = VBr^(g) 14.6 Eq. 79 
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The heat of reaction, 14.6 kilocalories, agreed quite well 

with the experimental value of 15.8 kilocalories obtained 

in the cell measurements when one considers the uncertainty 

in the method was approximately two kilocalories. 

The value obtained by Simons and Powell for the forma­

t ion of  the  te t rachlor ide  f rom VCI3 and chlor ine  was 9 .1  

kilocalories„ 

Preparation of Vanadium(IV) Bromide 

The desirability of preparing a sample of the tetra­

bromide to prove conclusively the presence of this substance 

in the vapor phase led to a series of experiments in which 

the vapor species over vanadium(III) bromide was condensed 

at relatively low temperatures. 

In the first series of experiments, reliable results 

could not be obtained owing to premature decomposition of 

the solid resulting from the fluctuations in the level of 

the cold trap liquid. 

Effective condensation and then decomposition of the 

solid phase was obtained in the second series of experiments; 

the results of the three runs are given in Table 12. As can 

be seen, the total bromide to vanadium molar ratio definitely 
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confirmed the presence of the tetrabromide. At dry ice tem­

peratures and below, the tetrabromide was a magenta color; 

it was stable at -45° C but slowly decomposed at -23°G to 

the tribromide and bromine. 

Table 12. Preparation of Vanadium(IV) Bromide 

Sample Brg VBrg Br2 VBrg Molar 
number (mg.) (mg.) (mmolesxl02) (mmolesxlO2) Ratio 

Br/V 

1  7.3  26 .4  4 .57  9 .10  4 .01  
2  29 .7  107 18 .6  37 .0  4 .02  
3  57 .4  210 35 .9  72 .2  3 .98  
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SUMMARY 

Transport reactions of the vanadium di- and trichlor­

ides and di- and tribromides were performed in a temperature 

gradient in an attempt to prepare single crystals of these 

compounds. Success was obtained for the divalent compounds 

when iodine was used to facilitate the formation of a 

volatile vapor species. Both trihalides were transported 

in the presence of a large excess of bromine vapor. 

Solid solution studies were made on the VClg-VBrg 

system using x-ray diffraction techniques. Both lattice 

parameters of the hexagonal solids exhibited slight positive 

deviation from ideal behavior, but it was more apparent in 

the Mc0" direction. The lattice constants of the mixed 

halide, VClgBr, possessed the values which would be expected 

for a solid solution of the same composition. 

The vapor pressures and related thermodynamic data for 

the dichloride and dibromide of vanadium were determined 

using the Knudsen effusion method. In addition, the vapor­

ization characteristics of the trichloride and tribromide 

were investigated using the methods of Knudsen and of gas 

saturation. 
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The existence of vanadium(IV) bromide as the predom­

inant vapor species over VBr3 at elevated temperatures was 

conclusively proven by Bourdon gauge and transpiration 

measurements. The mixed halides, VClgBr and VCl2Br2, were 

demonstrated to be the major vapor phases present in the 

transport processes of VCI3 and VCl2Br in the presence of 

bromine. 

The vaporization or equilibrium data obtained in this 

investigation may be represented by the equation: 

log Pjnm. (or K) = -A/T + B. Eq. 80 

In Table 13 are listed the data obtained for the various 

vanadium halides undergoing the processes of equations 81 

through 85 .  

VX2(s) = VX2(g) Eq." 81 

VX3 (s) = VX3(g) Eq. 82 

VX3(s) + %Br2(g) = VX3Br(g) Eq. 83 

2VX3(s) = VX2(s) + VX4(g) Eq. 84 

VX3(s) = VX2(s) + %X2(g) Eq. 85 
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Table 13 „ Thermodynamic Data of Some Vanadium Halides 

Substance Process A B Temp. Range AH AS 
^ (°K) (kcal.) (eu.) 

VCI2 
VBr2 

VCI3 
VCI3 
VCI3 
VBr3 
VBr3 

VBrg 
VBrg 

VCl2Br 

81 9804 8 .71  750-950 44.8+1.4 26.6+0.8 
81 10460 9 .08  750-950 47.8+1.6 . 28.3+0.8 
82 9777 11.20 625-740 44.7+1.4 38.0+0.8 
83 3450 5 .48  525-680 15.8+1.5 25.0+2.5 
84 7801 9 .84  625-740 36.0+1.0 32.0+1.2 
82 9470 11.12 590-700 43.3+1.2 37.7+1.0 
83 3465 5 .23  540-680 15.8+1.5 23.9+2.4 
84 8240 8 .47  590-697 37.7+1.3 25.5+0.8 
85 5070 5 .02  590-700 23.1+0.9 9 .3+0.4  
83 3460 5 .30  540-680 15.8+1.5 24.2+2.3 
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SUGGESTIONS FOR FURTHER WORK 

The work performed in this thesis represents only a 

small part of the work which might be done in connection 

with the study of the properties of the vanadium halides. 

Very little basic thermodynamic data have been experimen­

tally determined for these compounds. The estimated heats 

of formation are reported, in many cases, with uncertain­

ties as large as + 30 kilocalories. From accurate solution 

calorimetry the uncertainty in these values could be 

materially reduced. 

Since the heat of decomposition of vanadium(IV) chlor­

ide was determined over such a narrow temperature range by 

Simons and Powell (8), other measurements of this reaction 

should be made, preferably by some other method than that 

used. 

As the stable vapor species over the chlorides and 

bromides of vanadium(II) and (III) were shown to be the di-

and tetravalent halides respectively, a study of the 

fluoride compounds of vanadium would prove most interesting. 

The existence of possible mixed halides with chlorine, 

bromine, and iodine could be determined. Since the tri-

fluoride exhibits such a low volatility at temperatures 
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below ca. 1000°C, difficulty is usually experienced in 

growing large crystals of this material. A higher vapor­

ization rate may be possible in the presence of one of the 

other halogens. Such investigations could be performed 

with the use of a Bourdon gauge with little difficulty. 

A study of the vanadium iodide compounds should be 

undertaken to characterize the vapor species present in 

this system. Preliminary experiments on the transport of 

the diiodide in excess iodine indicated the presence of the 

vanadium(IV) iodide as the volatile species. Such a study 

would help in understanding the processes occurring in the 

vanadium crystal-bar process. 
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APPENDIX 

Solid Solution Determination 

Lattice constant refinement 

A valuable contribution to extrapolation techniques for 

the Debye-Scherrer camera was made independently by Taylor 

arid Sinclair (75) and Nelson and Riley (87). Attacking the 

problem from different angles, these investigators showed 

that errors in the lattice parameters caused by absorption 

can be materially reduced providing the source has an ex­

ponential intensity profile. 

The method, which utilizes all the data, was one of 

successive approximations. The first step was to calculate 

approximate values, a% and c]_, of the lattice parameters 

from the positions of the two highest angle lines. The 

approximate axial ratio ca% was then calculated and used 

in equation 86 to determine an "a" value for each line on 

the pattern. These values of "a" 

;+hk+k2) + (c/a)z_ Eq. 86 

were then extrapolated against the function 

Eq. 87 
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to find a more accurate value of "a", namely "a^". The 

value of C2 was found in a similar manner by use of the 

relation 

and another extrapolation against the function in equation 

87. The process was repeated using a least squares analysis 

to determine the intercept in each case. All angles were 

employed in making the extrapolations„ The values obtained 

for the lattice constants of VCI3 and VBrg for each line are 

included in this section to demonstrate the accuracy of the 

method. 

Composition determination 

The compositions of the solid solutions were determined 

in a number of ways, in many cases depending upon the method 

by which the solution was prepared. The table listing the 

solid solution data has four columns for the composition. 

The one actually used for the composition was determined in 

the following manner. 

The first value given in the table was calculated from 

the as weighed components before mixing. Since losses may 

(h+hk+k Eq. 88 
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possibly occur during transfer, this value was only an 

approximation. 

The second column was obtained from a determination of 

the percentage vanadium for each solution; the composition 

was then ascertained from a graph plotting per cent vana­

dium vs. composition. 

The third column was obtained from the determination of 

the percentage vanadium, percentage bromide, and percentage 

chlorideo In most cases, this value was used for the compo­

sition. 

In the equilibration experiments with chlorine, the 

composition was determined by calculating the number of 

moles present from the ideal gas law and then assuming that 

the reaction 

VBr3 + fci2 = VBr3_xClx + §Br2 Eq. 89 

proceeded to completion. 

Discussion of Errors 

Effusion 

Area of orifice The preparation of a circular 

knife-edge orifice in vycor or pyrex tubing proved to be 

one of the most frustrating problems in this investigation. 
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The absolute error in the area was most difficult to esti­

mate but the deviation from the mean of the values obtained 

from several measurements was assumed to be of the same 

order of magnitude of the error and was found to be approx­

imately two per cent. 

Temperature Thermocouples were calibrated at the 

melting point of lead and the boiling point of sulfur. 

Since the thermocouples were located closer to the furnace 

walls, the values obtained were somewhat higher than the 

true sample temperature. Differences of no more than + 1.5° 

were obtained. This error was approximately what was seen 

in the controller temperature fluctuations. 

Timer Time was measured with a Precision Time-It 

meter which could be read to 0.1 second. The error was con­

sidered negligible. Difficulty was experienced in the time 

required for the sample to reach thermal equilibrium. Cor­

rections were applied to reduce this effect in the shorter 

times by using a weighted average value for the temperature. 

Clausing factor The value of this factor was exper­

imenta l ly  determined and showed an error  of  less  than 0 .5  

per cent. 
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Analysis Vanadium contents could be determined to 

within one per cent in most experiments. Occasionally, in 

the very low concentrations, the error increased to near 

three per cent. The same accuracy was obtained in the 

bromine determinations. 

The maximum total estimated error would be obtained by 

summation: 

area 2.0% 
temperature 0.5% 
time 2.0% 
clausing factor 0.5% 
analysis 1.0% 

6.0% 

The errors listed for the values, which were obtained by 

calculating the standard deviation of the data, are some­

what less than the estimated total above. , This is to be 

expected, since the errors are random and may tend to cancel. 

Transpiration 

Flow rate The measurement of carrier gas volume 

which passed through the system was experimentally verified 

for accuracy by first determining the vapor pressure of 

water. Consistent results were obtained with accuracies 

of about one to two per cent. 
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Other errors Immeasurable sources of error include 

the contamination of the saturating gas during a determina­

tion by water, oxygen and any other contaminating material. 

Several sources of error listed under the effusion method 

also apply to this method as well as to the cell measure­

ments o 
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Table 14. The Lattice Parameters of Vanadium(III) Chloride 

hkl ao cQ 

006 6.049 17.44 
113 6.049 17.44 

"1-16 6.048 17.44 
030 6.046 17.43 
033 6.050 17.44 
119 6.057 17.46 
226 6.052 17.45 
229 6.069 17.49 
143 6.046 17.43 
146 6.050 17.44 
330 6.054 17.45 
149 6.056 . 17.46 

03(15) 6.062 17.48 

Table 15. The Lattice Parameters of Vanadium(III) Bromide 

hkl ao c0 

113 6.386 18.48 
116 6.388 18.50 
300 6.397 18.52 
033 6.403 18.54 
119 6.398 18.51 
306 6.399 18.53 
223 6.392 18.51 
226 6.400 18.52 
229 6.405 18.54 
143 6.399 18.53 
146 6.384 18.48 
149 6.401 18.53 
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Table 16. Lattice Constants of Vanadium(III) Bromide and 
Chloride 

Lattice 
Composition (Cl/V) parameters 

Sample As From From Value 0 0 
number mixed %V Analysis used a (A) Co (A) 

VC13 3.00 2.99 2.98 3.00 6.046 17.45 
19 2.95 2.98 2.95 2.95 6.063 17.48 

9 2.78 2.78 2.78 2.78 6.090 17.58 
39 2.71 2.68 2.74 2.68 6.106 17.66 
10 2.60 2.61 2.66 2.61 6.108 17.69 
41 2.55 2.58 2.52 2.52 6.124 17.74 
38 2.24 2.33 2.35 2.33 6.149 17.82 
12 2.25 2.26 2.25 2.25 6.146 17.81 

6 2.08 2.09 2.10 2.09 6.164 17.86 
34 2.01 2.06 2.06 2.06 6.166 17.91 
11 2.00 2.06 1.98 . 1.98 6.180 17.91 
42 1.99 1.98 1.97 1.97 6.184 17.92 
13 1.75 1.78 1.73 1.73 6.213 17.99 
43 1.50 1.50 1.55 1.50 6.240 18.08 
14 1.45 1.48 1.55 1.48 6.249 18.11 
21 1.18 1.30 1.25 . 1.25 6.278 18.17 
17 1.12 1.14 1.05 1.05 6.285 18.20 
25 1.19 1.10 1.15 1.10 6.293 18.20 
22 1.04 1.15 1.11 1.11 6.304 18.23 
15 1.08 1.03 1.01 1.01 6.293 18.21 
44 0.94 0.90 0.88 0.88 6.311 18.23 

3 0.67 0.68 0.63 0.63 6.338 18.36 
20 0.63 0.60 0.54 0.54 6.346 18.37 
45 0.52 0.52 0.57 0.52 6.406 18.48 
18 0.42 0.34 0.41 0.34 6.366 18.41 
35 0.27 0.30 0.30 0.30 6.406 18.48 
16 0.26 0.20 0.24 0.20 6.380 18.45 

» 
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Table 16. (Continued) 

Lattice 
Composition (Cl/V) parameters 

Sample As From From Value 
a(&) c0 (&) number mixed %V Analysis used a(&) c0 (&) 

47a  0.07b 0.10b 0.07 6.394 18.47 
48 a  0.16% 0.20% — —  0.16 6.383 18.46 
49a  0.13% 0.14b — — 0.13 6.390 18.46 
50a  0.04% 0.00b -  —  0.04 6.396 18.48 

5 Ie  0.29 0.28 0.28 0.28 6.371 18.42 
52e  0.50 0.49 0.49 0.49 6.350 18.39 
53e  0.73 0.74 0.74 0.74 6.328 18.31 

VBrq 3.00 2.97 2.98 3.00 6.402 18.49 

équilibration of VBrg with chlorine 

bprom gas law calculations 

^Transport of solid solutions with bromine 
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Table 17. Determination of Clausing Factor for Vycor Cell3 

Sample 
number 

Temp. 
(°C) 

Pu2 actual 
(mm.) 

Pjlg obtained 
(mm.) 

Clausing 
factor 

1 
2 
3 

48.2 
55.0 
60.6 

0.01115 
0.01801 
0.02631 

0.0100 
0.0162 
0.0236 

0.897 
0.902 
0.897 

aArea of orifice = 3.17x10"^ 2 cm 

Table 18. Determination of Clausing Factor for Pyrex Cella 

Experi­
ment 

number 

Temp. 
(°c) 

Theoretical 
vapor pressure 
of Eg (mm.) 

Found vapor 
pressure of 

Hg (mm.) 

Clausing 
factor 

1 
2 
3b 

4 

40.2 
52 
56 
62 

0.00627 
0.0146 
0.0192 
0.0288 

0.00534 
0.0124 
0.0130 
0.0244 

0.852 
0.850 
0.680 
0.847 

aArea of orifice = 2.76x10"^cm^ 

^Discarded 
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Table 19. Vapor Pressure of Vanadium(II) Chloride by Effusion 

Sample VC12 Temp. Time of Final 1/TxlO3 PVC12 

(mm.xlO^) 
-2 

-log 
number effused 

(mg.) 
(°K) run 

(sec.) 
pressure 
(microns) 

(°K)~1  

PVC12 

(mm.xlO^) 
-2 

PVC12 

252 0.86 763 18000 0.006 1.310 0.72 14.793 4.143 
253 1.66 784 15000 0.007 1.276 1.59 16.026 3.799 
254 2.15 799 12000 0.011 1.251 2.75 17.269 3.561 
255 3.72 815 12000 0.009 1.227 4.80 18.496 3.319 
256 4.85 829 10000 0.010 1.206 7.60 19.540 3.119 
257 6.65 843 9000 0.012 1.186 11.7 20.522 2.932 
258 12.4 871 7200 0.015 1.148 27.6 22.441 2.559 
259 16.9 888 6000 0.009 1.126 45.7 23.592 2.340 
260 15.9 904 3600 0.014 1.107 72.0 24.620 2.143 
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Table 20. Vapor Pressure of Vanadium(II) Bromide by Effusion 

Sample VBrg Temp. Time Final 1/TxlO3 ^VBr? -log 
number effused (°K) of Run pressure (o^)-l -5" 

(mg.) (sec.) (microns) (mm.xlO^) VBr^ 

201 1.00 793 15000 0.0074 1.261 0.78 14.704 4.108 
202 1.99 826 9000 0.0097 1.210 2.63 17.403 3.580 
203 4.11 847 9000 0.010 1.180 5.49 19.028 3.260 
204 6.18 873 6000 0.011 1.145 12.6 20.901 2.900 
205 12.4 902 5000 0.0097 1.108 30.9 22.911 2.510 
206 43.2 947 5000 0.012 1.055 110 . 25.766 1.958 
207 44.3 989 2000 0.011 1.011 288 27.994 1.541 
208 0.98 787 15000 0.0092 1.269 0.70 14.294 4.155 
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Table 21. Vaporization of Vanadium(III) Chloride by Effusion Using Pyrex Cell 

Sample 
number 

VC14 

effused 
(mg.) 

Temp. 
(°K) 

Time of 
run 

(sec.) 

Final 
pressure 
(microns) 

1/Txl03 

(°K) -1  
PVC14 

(mm.xlO3) 

VCI3 
effused 
(mg.) 

PVC13 

(mm.xlO' 

101 21.3 624 14,000 0.0081 1.602 2.00 0.33 0.34 
102 44.2 648 10,000 0.010 1.544 5.92 0.88 1.31 
103 54.7 659 8,200 0.0096 1.518 9.00 1.27 2.32 
105 127 682 7,200 0.012 1.467 24.2 3.50 7.40 
106 147 696 5,000 0.011 1.437 41.0 ' 4.55 14.0 
107 212 719 3,000 0.017 1.392 100 7.78 40.7 
108 301 742 2,000 0.014 1.348 218 12.9 103 

Table 22. Vaporization of Vanadium(III) Chloride by Effusion Using Vycor Cell 

Sample 
number 

VCI4 
effused 

(mg.) 

Temp. 
(°K) 

Time of 
run 

(sec.) 

Final 
pressure 
(microns) 

1/TxlO3 

(°K)-1 
PVC14 

(mm.xlO3) 

vci3  

effused 
(mg.) 

pvci3  

(mm.xlO^) 

51 50 655 7,200 0.0091 1.526 7.7 1.14 1.95 
52 80 674 5,000 0.0097 1.482 18.0 2.01 5.02 
53 150 707 2,500 0.010 1.413 69.6 4.92 25.1 
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Table 23. Vaporization of Vanadium(III) Bromide by 
Effusion Using Pyrex Cell 

Sample 
number 

VBrg 
effused 

(mg.) 

Bromine 
effused 

(mg.) 

Temp. 
(°K) 

Time of 
run 

(sec.) 

Final 
Pressure 

(microns) 

7 0.19 4.4 594 13,100 0.0080 
8 0.84 6.3 634 6,000 0.0097 
9 1.42 5.2 664 2,100 0.010 

12 0.40 4.7 616 7,500 0.0093 
14 2.18 6.8 675 2,000 0.010 
15 5.40 9.7 697 1,800 0.014 

Table 23. (Continued) 

Sample 1/TxlO3 pVBrg pBr? , VBr4 
PVBr4 

number (°K)"" (mm.xlO^) (mm.xlO^) effused (mm.xlO3) 

7 1.683 1.51 4.73 1.74 0.123 
8 1.577 15.3 15.3 4.61 0.733 
9 1.506 74.6 36.9 6.60 3.06 

12 1.623 5.68 9.0 2.63 0.330 
14 1.481 121 51.0 7.47 3.68 
15 1.435 340 82.2 14.8 8.22 
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Table 24. Vaporization of Vanadium(III) Bromide by Effusion Using Vycor Cell 

Sample 
number 

VBrg 
effused 

(mg.)  

Bromine 
effused 

(mg.) 

Temp. 
(°K) 

Time of 
Run 

(sec.) 

Final 
pressure 
(microns) 

16 
17 
19 

1.04 
2.38 
6.17 

8.25 
10.7 
13.6 

629 
655 
685 

8,000 
5,000 
3,000 

0.0086 
0.0094 
0.010 

Table 24. (Continued) 

Sample 
number 

1/Txl03 

(°K) -1  

PVBr3 
(mm.xIOS) 

PBr2 

(mm.xlO^) 
VBr4 

effused 
(mg.) 

PVBr4  ,  
(mm.xlO-3) 

16 1.589 11.5 12.3 5.48 0.537 
17 1.528 42.7 26.0 9.12 1.46 
19 1.460 190 56.5 17.1 4.64 
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Table 25. Transpiration of Vanadium(III) Bromide 

Sample 
number 

?s 
(mm. ) 

vm  

( l e )  
%-kw 
(mm.) 

TM 
(°K) 

GVBr4 

(mg.) 
K 

(io3) 
Time of 

run (sec.) 

1 742.2 3.04 720.4 294.4 101 0.437 6,105 
2 748.7 2.01 726.0 295.1 26.1 1.125 4,120 
3 748.5 3.02 726.3 294.7 23.9 1.846 5,870 
4 740.8 3 = 01 717.6 295.7 10 » 8  4.05 6,220 
5 742 3.07 719.2 295.2 6.1 7.34 6,080 
6 743.2 6.01 718.8 295.5 5.8 15.0 11,250 
7 740.7 9.00 718 = 1  295.2 5.8 22.6 18,100 
8 739.1 10 = 00 720.6 294.2 4.3 33.7 19,800 
9 736.0 15.00 714.0 294.5 1,4 156 27,900 

Table 25. (Continued) oo 
00 

Sample Ts 1/Tsxl03 ^VBr4 Total Brg from Ggrp K pBr2 

number (°K) (°K)"^- (mmexlO ) Br2 VBr4 net (10^) (mm=xlO ) 
(mg.) (mg.) (mg.) 

1 805 1.242 170 23.8 21=7 2.10 0.910 8.16 
2 775 1.290 66.5 6.40 5.63 0.77 1=65 4.54 
3 758 1.319 40.5 6.02 5.15 0.87 2.18 3.43 
4 736 1 = 358 18.3 2.84 2.32 0.52 3.63 2.04 
5 718 1.392 10 = 1  1.68 1=31 0.37 5.21 1 = 42 
6 700 1.428 4.96 1.72 1=25 0 = 47 8.04 .  0 .92 
7 689 1 = 451 3.28 1=79 1.25 0.54 10.5 0.71 
8 680 1.470 2.19 1.39 0.92 0.47 13 = 4  0.55 
9 644 1 = 552 0.47 0.48 0.30 0.18 33.0 0.22 
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Table 26. Cell Reaction of Vanadium(III) Bromide with 
Bromine 

Measure­ Sample Average Gas Law Actual pVBr4 
ment 

number 
temp. 
(°K) 

temp, 
of cell 

PBr2 PBr2 

pVBr4 

(°K) (mm. ) (mm.) (mm.) 

1 354.0 356.7 52.97 52.94 0.06 
2 474.2 499.8 73.98 72.06 3.84 
3 555.8 560.8 83.01 70.72 24.58 
4 577.4 590.4 87.41 66.72 41.38 
5 586.8 602.9 89.24 63.23 52.02 
6 607.6 611.0 90.44 52.73 75.42 
7 618.2 620.8 91.89 46.08 91.62 
8 629.4 633.3 93.74 40.68 106.12 
9 635.8 640.6 94.82 36.89 115.86 

10 653.0 655.8 97.07 26.99 140.16 
11 665.4 668.3 98.92 21.14 155.56 
12 678.2 680.6 100.75 15.45 170.60 
13 687.2 689.1 102.00 9.50 185.00 
14 699.2 701.0 103.76 2.92 201.68 
15 711.0 712.0 105.39 0.68 209.42 
16 683.0 686.8 101.66 10.47 182.38 
17 659.4 663.7 98.24 20.23 156.02 
18 645.0 649.6 96.15 27.50 137.30 
19 624.7 627.9 92.94 37.88 110.12 
20 608.0 609.0 90.14 47.48 85.32 
21 587.4 591.6 87.57 53.89 67.36 
22 554.0 559.5 82.82 61.29 43.06 
23 504.2 506.9 75.03 62.11 25.84 
24 

y 
427.7 429.9 63.63 53.01 21.24 
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Table 26. (Continued) 

Measure­
ment 

number 

Pressure 
in cell 

(mm.) 

(pBr2)% 

(mm.)^ 

K in 

(mm.) 2 

K in 

(atm.)^ 

1/TxlO3 

(°K) -1 

1 53.00 7.274 _ _  _ _  2.824 
2 75.90 8.489 0.452 0.0164 2.108 
3 95.30 8.410 2.922 0.1060 1.800 
4 108.10 8.168 5.066 0.1838 1.730 
5 115.25 7.952 6.541 0.2372 1.702 
6 128.15 7.262 10.385 0.3766 1.645 
7 137.70 6.788 13.497 0.4890 1.617 
8 146.80 6.378 16.638 0.6034 1.588 
9 152.75 6.074 19.074 0.6918 1.572 

10 167.15 5.195 26.979 0.9785 1.532 
11 176.70 4.597 33.839 1.227 1.502 
12 186.05 3.933 43.376 1.573 1.474 
13 194.50 3.064 60.378 2.190 1.455 
14 204.60 1.709 118.01 4.280 1.430 
15 210.10 0.825 253.84 9.207 1.406 
16 192.85 3.235 56.377 2.045 1.464 
17 176.25 4.497 34.694 1.258 1.516 
18 164.80 5.244 26.182 0.9496 1.550 
19 148.00 6.155 17.891 0.6479 1.600 
20 132.80 6.890 12.383 0.4491 1.643 
21 121.25 7.341 9.. 176 0.3328 1.702 . 
22 104.35 7.832 5.573 0.2023 1.805 
23 87.95 7.881 3.278 0.1189 1.983 
24 74.25 7.281 2.917 0.1058 2.338 

Initial Br2 pressure in cell = 43.55 mm. Hg at 21°C 

Final Br2 pressure in cell = 49.40 mm. Hg at 22°C 
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Table 27. Cell Reaction of Vanadium(III) Bromide with 
Bromine 

Measure­ Sample Average Gas Law Actual pVBr4 
ment temp. temp. pBrg PBr2 

pVBr4 

number (°K) of cell 
pBrg PBr2 

(°K) (mm.) (mm.) (mm.) 

1 531.4 533.3 160.33 148.51 23.64 
2 563.8 559.8 168.09 145.73 44.72 
3 585.8 586.0 176.18 138.46 75.44 
4 577.2 577.5 173.53 142.26 62.54 
5 606.6 606.9 182.31 124.62 115.38 
6 596.2 598.5 179.93 129.91 100.04 
7 632.0 634.6 189.43 102.31 174.24 
8 621.0 621.7 186.91 112.77 148.28 
9 647.0 646.1 194.24 89.68 209.12 

10 619.8 629.2 189.16 116.92 144.48 
11 657.6 658.4 197.94 77.63 240.62 
12 678.2 678.9 204.10 57.15 293.90 
13 667.5 669.2 201.19 65.88 270.62 
14 690.0 695.8 209.19 29.98 358.42 
15 695.7 706.6 212.43 23.96 376.94 
16 630.7 638.3 191.90 92.50 198.80 
17 573.4 576.4 173.29 133.63 79.32 
18 525.2 533.4 160.36 137.17 46.38 
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Table 27. (Continued) 

Measure­ Pressure <PBr2>% 

(mm.)^ 

K in K in 1/TxlO3 

ment in cell 
<PBr2>% 

(mm.)^ (mm.)^ number (mm. ) 

<PBr2>% 

(mm.)^ (mm.)^ (atm.) 2  

1 172.15 12.186 1.940 0.0704 1.883 
2 190.45 12.071 3.705 0.1344 1.773 
3 213.90 11.762 6.422 0.2329 1.706 
4 204.80 11.927 5.244 0.1902 1.733 
5 240.00 11.163 10.335 0.3748 1.647 
6 229.95 11.397 8.777 0.3184 1.678 
7 276.55 10.114 17.227 0.6248 1.582 
8 261.05 10.619 13.963 0.5064 1.610 
9 298.80 9.453 22.14 0.8027 1.546 

10 261.40 10.813 13.361 0.4846 1.613 
11 318.25 8.811 27.30 0.9902 1.520 
12 351.05 7.560 38.87 1.4098 1.475 
13 336.50 8.117 33.33 1.2089 1.499 
14 388.40 5.475 65.46 2.374 1.449 
15 400.90 4.894 77.02 2.794 1.437 
16 291.30 9.618 20.66 0.7493 1.585 
17 212.95 11.559 6.862 0.2489 1.745 
18 183.55 11.712 3.960 0.1436 1.905 

Initial Br2 pressure in cell = 88.00 mm. Hg at 19.5°C 

Final Br2 pressure in cell = 93.85 mm. Hg at 20°C 
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Table 28. Cell Reaction of Vanadium(III) Bromide with 
Bromine 

Measure- Sample Average Gas Law Actual pVBr/ 
ment temp. temp. pBr? pBro 

number (°K) of cell 
(°K) (mm.) (mm.) (mm.) 

1 378.6 384.2 148.02 148.02 - -

2 413.4 420.0 161.87 161.90 — — 

3 478.2 479.9 184.89 183.15 3.50 
4 563.6 566.0 217.94 195.63 44.62 
5 591.4 594.3 228.79 185.92 85.78 
6 585.0 592.4 228.03 190.74 74.51 
.7 618.1 623.1 240.04 167.33 145.77 
8 601.2 607.5 234.10 181.82 105.63 
9 635.7 641.0 246.43 147.13 195.97 

10 620.3 625.7 240.92 165.12 151.83 
11 652.4 658.2 253.64 127.62 252.08 
12 641.1 644.7 248.16 141.61 213.64 
13 663.5 667.9 257.31 111.04 290.96 
14 681.8 687.2 264.49 87.63 355.57 
15 673.4 678.5 261.24 98.78 325.92 
16 704.0 709.2 273.02 55.66 431.74 
17 690.0 693.0 267.14 77.10 384.05 
18 714.3 718.5 276.36 46.24 448.81 
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Table 28. (Continued) 

Measure­ Pressure <PBr2)% 

(ram.)^ 

K in K in 1/TxlO3 

ment in cell 
<PBr2)% 

(ram.)^ 
V • V 1—

1 
1 M

 
O

 SS 

number (mm. ) 

<PBr2)% 

(ram.)^ (mm.) 2 (atm. ) 2 

1—
1 

1 M
 

O
 SS 

1 148.00 2.641 
2 161.90 — — — — 2.419 
3 186.65 13.532 0.259 0.0094 2.091 
4 240.25 13.986 3.205 0.1162 1.774 . 
5 271.70 13.637 6.267 0.2274 1.691 
6 265.25 13.802 5.400 0.1961 1.704 
7 313.10 12.931 11.265 0.4093 1.618 
8 287.45 13.459 7.848 0.2847 1.663 
9 343.10 12.129 16.153 0.5872 1.573 

10 316.95 12.851 11.805 0.4288 1.612 
11 379.70 11.283 22.344 0.8116 1.533 
12 355.25 11.882 17.982 0.6539 1.560 
13 402.00 10.537 27.598 1.002 1.507 
14 443.20 9.360 38.02 1.380 1 = 467 
15 424.70 9.935 32.84 1.192 1.485 
16 487.40 - 7.458 57.87 2.104 1.420 
17 461.15 8.781 43.78 1.590 1.449 
18 495.05 6.798 66.15 2.403 1.400 

Initial Br 2 pressure in cell = 107.00 mm. Hg at 20.2°C 

Final Br 2 pressure in cell = 113.05 mm. Hg at 20.0°C 
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Table 29. Cell Reaction of VBrg with Bromine 

Measure­ Sample Average Gas Law Actual pVBr4 
ment temp. temp. PBr2 PBro 

pVBr4 

number C°K) of cell 
PBr2 z 

(°K) (mm.) (mm. ) (mm.) 

1 347.2 343.4 144.24 _ _  

2 482.4 480.0 201.62 199,62 2.00 
3 492.7 500.5 210.24 204.53 11.42 
4 531.2 540.2 226.91 212.82 28.18 
5 558.8 563.3 236.61 213.42 46.38 
6 584.0 591.2 248.33 206.71 83.24 
7 572.4 581.4 244.22 211.24 65.96 
8 602.4 612.6 257.32 193.84 126.96 
9 593.2 598.9 251.57 200.64 101.86 

10 620.0 628.2 263.88 175.61 176.54 
11 609.2 615.4 258.50 188.30 140.40 
12 631.6 638.2 268.08 162.76 210.64 
13 656.3 658.0 276.39 128.03 296.72 
14 645.0 644.8 270.76 145.62 250.28 
15 666.4 669.3 281.14 111.63 339.02 
16 657.2 660.6 277.49 125.28 304.42 
17 684.8 690.8 290.17 76.99 426.36 
18 681.6 681.7 286.35 89.40 393.90 
19 710.0 712.2 „ 299.16 50.82 496.68 
20 700.5 698.9 293.24 61.38 463.72 
21 720.6 721.7 303.15 36.30 533.70 
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Table 29. (Continued) 

Measure­
ment 

number 

Pressure 
in cell 

(mm. ) 

(pBr2>% 

(mm. )^ 

K in 

(mm.)^ 

K in 

(atra.)^ 

1/TxlO3 

(°K)-1 

1 144.00 
2 202.62 14.041 0.1424 0.0052 2.075 
3 215.95 14.301 0.7986 0.0290 2.029 
4 241.00 14.588 1.9317 0.0700 1.883 
5 259.80 14.609 3.175 0.1151 1.789 
6 289.95 14.378 5.789 0.2099 1=712 
7 277.20 14.534 4.538 0.1645 1.748 
8 320.80 13.923 9.118 0.3307 1.661 
9 302.50 14.165 7.190 0.2607 1.686 

10 352.15 13.252 13.321 0.4831 1.613 
11 328.70 13.722 10.231 0.3710 1.642 
12 373.40 12=758 16.510 0.5988 1.582 
13 424.75 11.315 26.223 0.9511 1.524 
14 395.90 12.067 20.740 0.7522 1.550 
15 450.65 10.566 32.085 1.164 1.502 
16 429.70 11.193 27.197 0.9864 1.522 
17 503.35 8.774 48.59 1.762 1.460 
18 483.30 9.455 41 = 66 1.511 1.466 
19 547.50 7.129 69.67 2.527 1.408 
20 525.10 7.835 59.18 2.146 1.429 
21 570.00 6.025 88.58 3.213 1.387 

Initial Br2 pressure in cell = 124.00 ram. Hg at 22°C 

Final Br2  pressure in cell = 129.80 mm. Hg at 22.4°C 
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Table 30. Cell Reaction of Vanadium(III) Bromide with 
Bromine 

Measure­
ment 

number 

Sample 
temp. 
(°K) 

Average 
temp, 

of cell 
(°K) 

Gas Law 

Pfir2 

(mm.) 

Actual 
PBr2 

(mm.) 

pVBr4 

(mm.) 

1 457.7 462.2 256.52 255.84 1.36 
2 476.4 486.1 269.78 267.96 3.64 
3 520.7 532.3 295.42 281.04 28.76 
4 562.4 568.8 315.68 284.86 61.64 
5 591.2 594.1 329.72 269.09 121.26 
6 575.2 583.3 323.73 281.16 85.14 
7 599.8 612=3 339.82 269.39 140.86 
8 614.6 625.8 347.31 254.42 185.78 
9 625.0 635.6 352.75 244.65 216.20 

10 644.2 655.6 363.85 211.50 304.70 
11 637.0 645.4 358.19 226.48 263.42 
12 666.2 675.1 374.67 171.99 405.36 
13 658.4 664.0 368.51 189.92 357.18 
14 680.0 693.6 384.94 129.63 510.62 
15 670.7 681.1 378.00 149.35 457.30 
16 685.7 700.2 388.60 110.90 555.40 
17 717.7 731.4 405.92 67.74 676.36 
18 701.2 720.3 399.76 96.97 605.58 
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Table 30. (Continued) 

Measure­ Pressure (pBr2
)% K in K in 1/TxlO3 

ment in cell 
(pBr2

)% 

1. 
number (mm.) (mm.)^ (mm.) 2 (atm.) 2  CK)"1  

1 257.20 15.988 0.085 0.0031 2.183 
2 271.60 16.364 0.222 0.0081 2.101 
3 309.80 16.774 1.715 0.0623 1.919 
4 346.50 16.878 3.652 0.1324 1.779 
5 390.35 16.404 7.392 0.2681 1.692 
6 . 366.30 16.768 5.078 0.1841 1.739 
7 410.25 16.413 8.582 0.3112 1.667 

. 8 440.20 15.950 11.647 0.4224 1.626 
9 460.85 15.641 13.822 0.5013 1.600 

10 516.20 14.543 20.951 0.7599 1.553 
11 489.90 15.049 17.504 0.6348 1,570 
12 577.35 13.114 30.910 1.1211 1.502 
13 547.10 13.718 26.037 0.9443 1.520 
14 640.25 • 11.386 44.846 1.6266 1.471 
15 606.65 12.221 37.419 1.3572 1.490 
16 666.30 10.531 52.739 1.9129 1.458 
17 744.10 8.230 82.18 2.9807 1.393 
18 702.55 9.847 61.49 2.2303 1.426 

Initial Br£ pressure in cell = 163.00 mm. Hg at 20.5°C 

Final Brg pressure in cell = 169.05 mm. Hg at 21„2°C 
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Table 31. Cell Reaction of Vanadium(III) Chloride with 
Bromine 

Measure­ Sample Average Gas Law Actual pVCl3Br 
ment temp. temp. ^Bro PBr2 

number (°K) of cell z, 

(°K) (mm. ) (mm. ) (mm. ) 

1 373.2 373.9 179.85 179.75 
2 405.2 407.2 195.87 195.82 - — 

3 391.4 392.4 188.75 188.70 — — 

4 416.4 418.5 201.31 201.25 — — 

5 471.4 475.1 228.53 225.52 6.01 
6 497.4 502.8 241.86 234.21 15.30 
7 523.0 529.4 254.65 232.67 44.16 
8 513.4 518.8 249.55 229.04 41.02 
9 545.7 552.7 265.86 234.94 61.84 

10 554.7 563.4 271.01 232.23 77.56 
11 582.8 591.1 284.33 219.40 129.86 
12 573.0 580.3 279.14 219.68 118.92 
13 605.7 614.1 295.39 181.56 227.66 
14 592.4 600.9 289.04 192.12 193.84 
15 623.6 632.6 304.29 152.92 302.74 
16 612.2 620.6 298.52 164.39 268.26 
17 647.4 657.4 316.22 105.09 422.26 
18 637.7 646.8 311.12 126.76 368.72 
19 676.6 687.1 330.51 63.58 533.86 
20 669.7 679.9 327.05 80.52 493.06 
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Table 31. (Continued) 

Measure­
ment 

number 

Pressure 
in cell 

(mm. ) 

(PBr2)% 

(mm.)^ 

K in 

(mm. )^ 

K in 

(atm.)^ 

1/TxlO3 

(°K)-1 

1 195.05 
2 212.45 —  —  —  —  — - — —  

3 204.70 —  —  - — —  —  

4 218.35 - —  —  —  —  - -

5 250.93 15.076 0.401 0.0146 2.121 
6 270.05 15.293 1.000 0.0363 2.010 
7 298.35 15.254 2.985 0.1050 1.912 
8 291.25 15.134 2.710 0.0982 1.947 
9 319.35 15.328 4.034 0.1463 1.832 

10 332.80 15.239 5.090 0.1846 1.802 
11 373.40 14.812 8.767 0.3179 1.715 
12 362.30 14.822 8.023 0.2910 1.745 
13 434.30 13.474 16.900 0.6129 1.650 
14 410.50 13.861 13.984 0.5072 1.688 
15 481.50 12.366 24.482 0.8879 1.603 
16 458.00 12.822 20.922 0.7588 1.633 
17 554.20 10.251 41.192 1.494 1.544 
18 521.90 11.259 32.749 1.188 1.568 
19 625.50 7.974 66.950 2.428 1.477 
20 601.35 8.973 56.074 2.034 1.493 

Initial Brg pressure in cell = 141.60 mm. Hg at 21.3°C 

Final Br2 pressure in cell = 147.95 mm. Hg at 21.0°C 
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Table 32. Cell Reaction of VCl2Br with Bromine 

Measure­
ment 

number 

Sample 
temp, 
(°K) 

Average 
temp. 

of cell 
(°K) 

Gas Law 
PBr2 

(mm.) 

Actual 
PBr2 

(mm.) 

?VCl2Br2 

1 376.42 380.3 154.32 154.20 — — 

2 402.86 405.92 164.64 164.60 - -

3 536.4 541.6 208.97 194.84 28.26 
4 557.2 560.4 217.23 193.71 47.04 
5 583.1 586.4 228.12 184.24 87.76 
6 574.8 578.3 233.94 196.43 75.02 
7 616.4 619.1 250.53 165.31 170.44 
8 603.2 605.2 244.87 175.24 139.26 
9 631.6 634.1 259.19 147.28 223.82 

10 619.5 623.7 251.88 160.56 182.64 
11 654.7 657.5 266.39 113.18 306.42 
12 '  643.5 649.3 263.48 130.06 266.84 
13 680.2 685.1 277.71 75.02 405.38 
14 671.4 680.9 275.86 90.72 370.28 
15 692.8 694.7 281.63 55.36 452.54 
16 684.1 687.8 279.04 72.78 412.52 
17 701.0 704.2 285.37 47.84 475.06 
18 663.3 667.1 270.42 100.18 340.52 
19 710.4 711.1 288.10 37.42 501.38 
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Table 32. (Continued) 

Measure­
ment 

number 

Pressure 
in cell 

(mm.) 

<PBr2>% 

(mm.)^ 

K in 

(mm.) 2 

K in 

(atm.) 2  

1/TxlO3 

(°K) "1 

1 161.85 „„ 

2 172.80 - - - - — • — — 

3 224.10 13.953 2.023 0.0732 1.867 
4 240.75 13.912 3.390 0.1230 1.793 
5 272.00 13.582 6.469 0.2347 1.716 
6 271.45 14.102 5.324 0.1932 1.740 
7 335.75 12.871 13.264 0.4806 1.623 
8 314.50 13.231 10.528 0.3819 1.658 
9 371.10 12.137 18.432 0.6680 1.583 

10 343.20 12.659 14.437 0.5212 1.613 
11 419.60 10.640 28.802 1.044 1.529 
12 396.90 11.402 23.216 0.8423 1.553 
13 480.40 8.661 46.75 1.696 1.470 
14 461.00 9.524 38.91 1.410 1.481 
15 507.90 7.443 60.80 2.204 1.443 
16 485.30 8.531 48.26 1.751 1.462 
17 522.90 6.915 68.71 2.491 1.427 
18 440.70 10.004 34.05 1.235 1.508 
19 538.80 6.115 81.98 2.974 1.408 

Initial Br£ pressure in cell = 120.00 mm. Hg at 22.6°C 

Final Br2 pressure in cell = 126.35 mm. Hg at 23.2°C 
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Table 33. Transport of Vanadium(III) Bromide by Bromine 

Sample Mmoles -^Bro Vol. of Br2 Flow rate Temp. Mmoles ^VBr4 
number Brg (atm.xlO3) ( 1.) of Brg (°K) V (atm.xlO ) 

(ml./min.) 

3 0.79 1.58 2.30 30 561 0.625 1.25 
4 0.46 1.58 1.34 45 561 0.381 1.31 
5 0.36 1.58 1.14 21 561 0.335 1.35 
7 2.53 88 1.32 45 561 0.957 3.34 
8 1.98 89 1.03 62 561 0.742 3.31 
9 4.23 88 2.21 9 561 1.91 3.97 

10 3.18 88 1.66 33 561 1.22 3.38 
11 3.02 111 1.26 27 561 1.04 3.80 
12 4.66 111 1.94 38 561 1.59 3.77 
13 8.31 112 3.47 107 561 2.72 3.61 
14 5.14 111 2.14 11 561 1.81 3.90 
15 7.38 217 1.57 22 561 1 = 86 5.45 
16 9.52 216 2.03 67 561 2.34 5.30 
17 11.37 217 2.43 98 561 2.78 5.26 
18 10.51 217 2.23 38 561 2.60 5.35 
20 1.03 1.58 3.18 52 587 1.77 2.72 
22 3.71 111 1.64 47 587 2.41 7.17 
23 12.79 219 2.80 30 587 5.86 10.2 
25 0.43 1.58 1.15 46 515 0.112 0.41 
26 2.78 111 1.06 35 515 0.272 1.08 
27 9.93 220 1.88 28 514 0.673 1.51 
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